计算机的原码、补码、反码

计算机的原码、补码、反码

参考:

http://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html

https://blog.csdn.net/w893932747/article/details/80803271

机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数

机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。

如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。

例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 ,而不是形式值131(10000011转换成十进制等于131)。

所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值

原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001
[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]
即 
[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

数学表达

若X是纯整数,则:

[X]trueCode={X0≤X≤2n−1−12n−1+∣X∣−(2n−1−1)≤X≤0 [X]_{trueCode} = \{ \begin{matrix} X &&& 0 \leq X \leq 2^{n-1} - 1 \\ 2^{n-1} + |X| &&& -(2^{n-1} - 1) \leq X \leq 0 \end{matrix} [X]trueCode={X2n1+X0X2n11(2n11)X0

若X是纯小数,则:

[X]trueCode={X0≤X<120+∣X∣−1<X≤0 [X]_{trueCode} = \{ \begin{matrix} X &&& 0 \leq X < 1 \\ 2^{0} + |X| &&& -1 < X \leq 0 \end{matrix} [X]trueCode={X20+X0X<11<X0

反码

反码的表示方法是:

​ 正数的反码是其本身

​ 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

若X是纯整数,则:

[X]ones−complementCode={X0≤X≤2n−1−12n−1+X−(2n−1−1)≤X≤0 [X]_{ones-complementCode} = \{ \begin{matrix} X &&& 0 \leq X \leq 2^{n-1} - 1 \\ 2^n - 1 + X &&& -(2^{n-1}-1) \leq X \leq 0 \end{matrix} [X]onescomplementCode={X2n1+X0X2n11(2n11)X0

若X是纯小数,则:

[X]ones−complementCode={X0≤X<12−2−(n−1)+X−1<X≤0 [X]_{ones-complementCode} = \{ \begin{matrix} X &&& 0 \leq X < 1 \\ 2-2^{-(n-1)} + X &&& -1 < X \leq 0 \end{matrix} [X]onescomplementCode={X22(n1)+X0X<11<X0

补码

补码的表示方法是:

​ 正数的补码就是其本身

​ 负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

若X是纯整数,则:

[X]complementalCode={X0≤X≤2n−1−12n+X−2n−1≤X≤0 [X]_{complementalCode} = \{ \begin{matrix} X &&& 0 \leq X \leq 2^{n-1} - 1 \\ 2^n + X &&& -2^{n-1} \leq X \leq 0 \end{matrix} [X]complementalCode={X2n+X0X2n112n1X0

若X是纯小数,则:

[X]complementalCode={X0≤X<12+X−1≤X<0 [X]_{complementalCode} = \{ \begin{matrix} X &&& 0 \leq X < 1 \\ 2 + X &&& -1 \leq X < 0 \end{matrix} [X]complementalCode={X2+X0X<11X<0

移码

移码最简单了,不管正负数,只要将其补码的符号位取反即可。

移码是解决计算机中浮点数运算的问题而出现的。

X=-101011 , [X]原= 1010_1011 ,[X]反=1101_0100,[X]补=1101_0101,[X]移=0101_0101

若X是纯整数,则:

[X]frameShift=2n−1+X(−2n−1≤X<2n−1); [X]_{frameShift} = 2^{n-1} + X(-2^{n-1} \leq X < 2^{n-1} ); [X]frameShift=2n1+X(2n1X<2n1);

若X是纯小数,则:

[X]frameShift=1+X(−1≤X<1) [X]_{frameShift} = 1 + X(-1 \leq X < 1) [X]frameShift=1+X(1X<1)

1. 为何要使用原码、反码和补码

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见负数的原码、反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

1.1. 用符号位代替减法,用补码将符号位加入运算

首先,因为人脑可以知道第一位是符号位,在计算的时候我们会根据符号位选择对真值区域的加减。

对于计算机来说,加减乘除运算都会转化为加法运算,使用补码就是将减法转化为加法的一种方式。

根据运算法则,减去一个正数等于加上一个负数,即:1-1 = 1 + (-1)。

计算机辨别"符号位"会让计算机的基础电路设计变得复杂,-1用补码来表示就可以将符号位也加入运算,这样运算的设计就更简单了。

使用原码计算

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

符号位不能直接加入运算。

使用反码计算

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的.

而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

使用补码计算

补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128.

注意: 因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-2^31, 2^31-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

2. 从数学角度深究原码、反码、补码

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

1. 往回拨2个小时: 6 - 2 = 4

2. 往前拨10个小时: (6 + 10) mod 12 = 4

3. 往前拨10+12=22个小时: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

2.1. 同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余

记作 a ≡ b (mod m)

读作 a 与 b 关于模 m 同余。

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28关于模 12 同余.

2.2. 负数取模

正数进行mod运算是很简单的,但是负数呢?

下面是关于mod运算的数学定义:

x  mod  y=x−y⌊x/y⌋,for  y≠0 x \; mod \; y = x - y \left \lfloor x / y \right \rfloor , for\; y \neq 0 xmody=xyx/y,fory̸=0

上面公式的意思是: x mod y 等于 x 减去 y 乘上 x与y的商的下界

以 -3 mod 2 举例:

−3 mod 2                           =−3−2×⌊−3/2⌋=−3−2×⌊−1.5⌋ =−3−2×⌊−2⌋      =−3+2                           =1                                           -3 \, mod\, 2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ = -3 - 2 \times \left \lfloor -3/2 \right \rfloor \\ = -3 - 2 \times \left \lfloor -1.5 \right \rfloor \,\\ = -3 - 2 \times \left \lfloor -2 \right \rfloor \,\,\,\,\,\,\\ = -3 + 2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ = 1 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, 3mod2=32×3/2=32×1.5=32×2=3+2=1

所以:

(-2) mod 12 = 12-2 =10
(-4) mod 12 = 12-4 = 8 
(-5) mod 12 = 12 - 5 = 7

2.3. 数学证明

再回到时钟的问题上:

回拨2小时 = 前拨10小时
回拨4小时 = 前拨8小时
回拨5小时= 前拨7小时

注意这里发现的规律!

结合上面学到的同余的概念,实际上:

(-2) mod 12 = 10
10 mod 12 = 10

-2与10是同余的

(-4) mod 12 = 8
8 mod 12 = 8

-4与8是同余的

距离成功越来越近了,要实现用正数替代负数,只需要运用同余数的两个定理:

反身性:

a ≡ a (mod m)

这个定理是很显而易见的。

线性运算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那么:
(1)    a ± c ≡ b ± d (mod m)
(2)    a * c ≡ b * d (mod m)

如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)
(-2) ≡ 10 (mod 12)
7 -2 ≡ 7 + 10 (mod 12)

计算结果的余数相等。

接下来回到二进制的问题上,看一下:2-1=1的问题。

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反

先到这一步,-1的反码表示是1111 1110,如果这里将[1111 1110]认为是原码,则[1111 1110]原 = -126,这里将符号位除去,即认为是126。

发现有如下规律:

(-1) mod 127 = 126
126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)
2-1 ≡ 2+126 (mod 127)

2-1 与 2+126的余数结果是相同的!而这个余数,正式我们的期望的计算结果:2-1=1

所以说一个数的反码,实际上是这个数对于一个膜的同余数;而这个膜并不是我们的二进制,而是所能表示的最大值!

这就和钟表一样,转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮,而因为符号位是参与计算的,正好和溢出的最高位形成正确的运算结果。

既然反码可以将减法变成加法,那么现在计算机使用的补码呢?为什么在反码的基础上加1还能得到正确的结果?

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补

如果把[1111 1111]当成原码,去除符号位,则:

[0111 1111]原 = 127

其实,在反码的基础上+1,只是相当于增加了膜的值:

(-1) mod 128 = 127
127 mod 128 = 127 
2-1 ≡ 2+127 (mod 128)

此时,表盘相当于每128个刻度转一轮,所以用补码表示的运算结果最小值和最大值应该是[-128, 128]。

但是由于0的特殊情况,没有办法表示128,所以补码的取值范围是[-128, 127]

博客
32132
07-14 362
07-12 294
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值