复数相位近似估计

作者:桂。

时间:2018-01-27  19:58:10

链接:http://www.cnblogs.com/xingshansi/p/8367519.html 


前言

主要记录几种复数相位计算的方法,暂未做进一步的比较分析。

一、逼近简述

  复数相位估计的问题可表述为:

已知z = x+iy,arctan(y/x) = ?

  复数相位估计,指标主要有三个:1)运算量;2)处理时间;3)估值精度。

  相位估计算法大致可分为三类:

  • 级数展开:如taylor展开
  • 迭代求解:如CORDIC
  • 有理函数逼近:如pade逼近

  常用的CORDIC算法特点是消耗资源少,但当精度要求较高时需要多个迭代周期,典型的以时间换空间,消耗的内存少。taylor级数展开:

或者euler展开:

但利用级数无穷项展开,需要的乘法器资源巨大,即使舍去高阶项也需要较多阶数,工程应用不理想,且展开式可能仅局部收敛。取而代之的思路是:做一个LUT,将计算得到的x/y做插值处理,以相位误差小于1e-4rad为例,需要内存(数据取18bit)约为:31415*18/8/1024 = 69kb。更常用的一个思路是,利用arctan的基本性质:

11-23 827
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值