声明:文中图片均来自于EL5123,Yao Wang, Polytechnic University Brooklyn NY 11201
介绍
生活中,我们在修图工具中经常会看到对比度(Contrast)调节这个选项,但事实上并不是所有人都对对比度有比较清晰的理解。
看下面这张图片:
这是上面这张图的直方图:
横坐标是灰度值(0~255),其实从图上我们就已经可以很直观的看到大量的灰度分布比较集中,而人眼对于相近的灰度不易区分,所以图片整体就显得比较灰蒙蒙的,细节不清晰。
接着来看下面这个颜色条,可以很直观的感觉到灰度相差越大越好区分,比如白和黑。
所以对比度增强实质上就是对图像原灰度值作变换,从而使对比度分布的区间更大,增强对比度。
看下面这张图来体会什么样的直方图是对比度比较好的图像。
再看一下之前的那张图片:
它的直方图分布:
直方图均衡化
我们使用一个函数 g(x)
来映射原来的灰度值到一个新的灰度值,如果我们把图像的灰度值看作是随机变量的取值的话,那么这部分内容就设计到 随机变量函数的函数的分布
。
那么这个函数作为随机变量函数的分布要满足什么条件呢?
1. g(x)
必须是严格单调函数
2. g(x)
的反函数有连续导数
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
g(x)
作为图像灰度映射的条件:
1. 必须是非递减的,以便灰度值的相对亮度不改变(也就是不能黑的变白的,白的变黑的)。
2. g(x)
必须与x的取值范围相同,以便映射后的灰度值仍然在规定范围内。
确定g(x)
的形式
为了增强对比度,我们想要直方图尽可能的平均分布于各个灰度值(不偏谁不向谁)。
其它方法:
* 使用一个固定的形式:线性,非线性