对比度增强(直方图均衡化)

本文介绍了对比度增强的概念,通过分析图像直方图展示了对比度不足的情况。直方图均衡化是一种有效的方法,通过映射灰度值来实现对比度的提升。文中探讨了线性拉伸、分段线性拉伸和非线性拉伸等不同的对比度增强技术,并提供了实例说明。
摘要由CSDN通过智能技术生成

声明:文中图片均来自于EL5123,Yao Wang, Polytechnic University Brooklyn NY 11201

介绍

生活中,我们在修图工具中经常会看到对比度(Contrast)调节这个选项,但事实上并不是所有人都对对比度有比较清晰的理解。
看下面这张图片:
低对比度
这是上面这张图的直方图:
直方图
横坐标是灰度值(0~255),其实从图上我们就已经可以很直观的看到大量的灰度分布比较集中,而人眼对于相近的灰度不易区分,所以图片整体就显得比较灰蒙蒙的,细节不清晰。
接着来看下面这个颜色条,可以很直观的感觉到灰度相差越大越好区分,比如白和黑。
灰度

所以对比度增强实质上就是对图像原灰度值作变换,从而使对比度分布的区间更大,增强对比度。
看下面这张图来体会什么样的直方图是对比度比较好的图像。
图像对比度

再看一下之前的那张图片:
这里写图片描述

它的直方图分布:
这里写图片描述

直方图均衡化

我们使用一个函数 g(x) 来映射原来的灰度值到一个新的灰度值,如果我们把图像的灰度值看作是随机变量的取值的话,那么这部分内容就设计到 随机变量函数的函数的分布
那么这个函数作为随机变量函数的分布要满足什么条件呢?
1. g(x)必须是严格单调函数
2. g(x) 的反函数有连续导数

反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

g(x)作为图像灰度映射的条件:
1. 必须是非递减的,以便灰度值的相对亮度不改变(也就是不能黑的变白的,白的变黑的)。
2. g(x) 必须与x的取值范围相同,以便映射后的灰度值仍然在规定范围内。

确定g(x)的形式

为了增强对比度,我们想要直方图尽可能的平均分布于各个灰度值(不偏谁不向谁)。
其它方法:
* 使用一个固定的形式:线性,非线性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值