LeetCode每日一题之专题一:双指针 ——快乐数

本文介绍了如何通过分析快乐数问题的性质,利用快慢指针算法判断一个正整数是否会在每次操作后进入循环并最终回到1(快乐数)。方法涉及计算每个数字的平方和,并使用两个指针跟踪变化过程。
摘要由CSDN通过智能技术生成

快乐数OJ链接:202. 快乐数 - 力扣(LeetCode)

题目:

题目分析:
为了房便叙述,将「对于⼀个正整数,每⼀次将该数替换为它每个位置上的数字的平方和」这⼀个
操作记为 x 操作;
题目告诉我们,当我们不断重复 x 操作的时候,计算⼀定会「死循环」,死的方式有两种:
▪ 情况⼀:⼀直在 1 中死循环,即 1 -> 1 -> 1 -> 1...... 
▪ 情况⼆:在历史的数据中死循环,但始终变不到 1 
由于上述两种情况只会出现⼀种,因此,只要我们能确定循环是在「情况⼀」中进行,还是在「情
况⼆」中进行,就能得到结果。
简单证明:
a. 经过⼀次变化之后的最⼤值 9^2 * 10 = 810 ( 2^31-1=2147483647 。选⼀个更⼤的最
⼤ 9999999999 ),也就是变化的区间在 [1, 810] 之间;
b. 根据「鸽巢原理」,⼀个数变化 811 次之后,必然会形成⼀个循环;
c. 因此,变化的过程最终会走到⼀个圈⾥面,因此可以用「快慢指针」来解决。
4. 解法(快慢指针):
算法思路:
根据上述的题目分析,我们可以知道,当重复执行 x 的时候,数据会陷入到⼀个「循环」之中。
⽽「快慢指针」有⼀个特性,就是在⼀个圆圈中,快指针总是会追上慢指针的,也就是说他们总会
相遇在⼀个位置上。如果相遇位置的值是 1 ,那么这个数⼀定是快乐数;如果相遇位置不是 1 
的话,那么就不是快乐数。
补充知识:如何求⼀个数n每个位置上的数字的平方和。
a. 把数 n 每⼀位的数提取出来:
循环迭代下面步骤:
i. int t = n % 10 拿到个位;
ii. n /= 10 噶掉个位;
直到 n 的值变为 0 ;
b. 提取每⼀位的时候,用⼀个变量 sum 记录这⼀位的平方与之前提取位数的平方和
▪ sum = sum + t * t

 

C++:

class Solution
{
public:
    int bitSum(int n)//返回 n 这个数每⼀位上的平⽅和
    {
        int sum = 0;
        while (n)
        {
            int t = n % 10;//拿到个位上的数
            sum += t * t;//个位上数的平方和
            n /= 10;//用完就噶掉一位数
        }
        return sum;
    }
    bool isHappy(int n)
    {
        int slow = n, fast = bitSum(n);
        while (slow != fast)
        {
            slow = bitSum(slow);
            fast = bitSum(bitSum(fast));
        }
        return slow == 1;
    }
};

运行结果:

PS:看到这里了,码字不易,给个一键三连鼓励一下吧!有不足或者错误之处欢迎在评论区指出!  

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值