动态规划-01背包(完结撒花)

前言

背包好难 qwq。


概念

01背包之所以叫“01”背包,就是它需要选择是否将当前这样物品装入背包。 0 0 0 代表不装, 1 1 1 代表装。

目录

一、板子题和强化
二、比较简单的应用
三、01背包问题输出方案
四、需要排序的01背包问题
五、01背包进阶

一、板子题和强化

题目描述

有一个最多能装 m m m 千克的背包,有 n n n 块魔法石,它们的重量分别是 W 1 , W 2 , . . . , W n W_1,W_2,...,W_n W1,W2,...,Wn ,它们的价值分别是 C 1 , C 2 , . . . , C n C_1,C_2,...,C_n C1,C2,...,Cn。若每种魔法石只有一件,问能装入的最大总价值。

输入格式

第一行为两个整数 m m m n n n,以下 n n n 行中,每行两个整数 W i , C i W_i,C_i Wi,Ci,分别代表第 i i i 件物品的重量和价值。

输出格式

输出一个整数,即最大价值。

样例输入

8 3
2 3
5 4
5 5

样例输出

8

1.板子

1 ≤ m ≤ 30 , 1 ≤ n ≤ 15 1\le m \le 30,1\le n\le 15 1m30,1n15.

首先还是分析问题:每个东西都可以选择选或不选。我们假设正在抉择第 i i i 个物品,如果选的话,我们需要付出的代价就是占据一部分的背包容量。可见有两个因素在影响dp数组的值: i i i 和背包容量 m m m

因此可以定义dp数组的意义为:

d p i , j dp_{i,j} dpi,j 代表在前 i i i 件物品中做选择,背包容量为 j j j 时能获得的最大价值。

好,继续分析,每次对于第 i i i 个物体的抉择,无非是选和不选的两种情况。

如果选的话,那么在选择前 i − 1 i-1 i1 个物体的时候,可以使用的背包容量就需要减少 w i w_i wi,但是所获得的价值就可以加上 c i c_i ci

如果不选,那就和选择前 i − 1 i-1 i1 个物品的最优情况是一样的。

可得出动态转移方程:

d p i , j = max ⁡ ( d p i − 1 , j , d p i − 1 , j − w i + c i ) dp_{i,j}=\max(dp_{i-1,j},dp_{i-1,j-w_i}+c_i) dpi,j=max(dpi1,j,dpi1,jwi+ci)

C o d e Code Code

把动态转移方程套到程序里面就可以了,注意循环两层从小到大。

#include<bits/stdc++.h>
using namespace std;
int n,m,w[20],c[20],dp[20][35];
int main(){
   
	scanf("%d %d",&m,&n);
	for(int i=1;i<=n;i++){
   
		scanf("%d %d",&w[i],&c[i]);
	}
	for(int i=1;i<=n;i++){
   
		for(int j=1;j<=m;j++){
   
			if(w[i]>j)
				dp[i][j]=dp[i-1][j];
			else
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+c[i]);
		}
	}
	printf("%d",dp[n][m]);
	return 0;
}

2.压缩空间

1 ≤ m ≤ 3 × 1 0 6 , 1 ≤ n ≤ 100 1\le m \le 3\times 10^6,1\le n\le 100 1m3×106,1n100,空限变得极度 duliu。

考虑优化空间复杂度。

上述程序的 d p dp dp 数组为二维数组,但是大家注意到动态转移方程时只需要用到 d p i − 1 , ? dp_{i-1,?} dpi1,? 的值。

这也就意味着我们可以使用滚动数组优化空间复杂度。(不过时间复杂度就没法变了……)

需要注意的是,因为问号处的值必定小于 j j j,所以我们 j j j 这一维需要倒着枚举,不然在利用前面的值的时候就会错利用为 d p i , ? dp_{i,?} dpi,? 而非 d p i − 1 , ? dp_{i-1,?} dpi1,? 的值了。

C o d e Code Code

#include<cstdio>
#define max(a,b) (a)>(b)?(a):(b)
int m,n,dp[35],w[20],c[20];
int main(){
   
	scanf("%d %d",&m,&n);
	for(int i=1;i<=n;i++){
   
		scanf("%d %d",&w[i],&c[i]);
	}
	for(int i=1;i<=n;i++){
   
		for(int j=m;j>=w[i];j--){
   
			dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
		}
	}
	printf("%d",dp[m]);
	return 0;
} 

3.如果有其它的限制条件……

1 ≤ n ≤ 100 1\le n\le 100 1n100

1 ≤ W i , m ≤ 1 0 9 1\le W_i,m\le 10^9 1Wi,m109

1 ≤ C i ≤ 1 0 7 1\le C_i\le 10^7 1Ci107

对于每个 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n,满足 W 1 ≤ W i ≤ W 1 + 3 W_1\le W_i\le W_1+3 W1WiW1+3


如果按照背包的板子做,那么一定会 TLE \texttt{TLE} TLE MLE \texttt{MLE} MLE。那如何优化呢?

我们注意到数据范围里有一句十分特殊的话:

对于每个 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n,满足 W 1 ≤ W i ≤ W 1 + 3 W_1\le W_i\le W_1+3 W1WiW1+3

那么我们完全可以把每个物品的重量以 W 1 W_1 W1 为基准,转化为一个不超过 3 3 3 的数。这么可以极大地优化空间复杂度。

h h h 代表 W 1 W_1 W1 的真实数字。

但是这样的话,我们就无法得知我们现在装的东西到底有没有超过背包的容量,因为我们并不知道我们选了多少个东西。所以 d p dp dp 数组还需要开一维代表选择物品的个数。

所以 d p i , j , k dp_{i,j,k} dpi,j,k 代表在前 i i i 个物品中选择 k k k 个物品,背包容量为 j j j 时的最大价值。

还需要注意一下循环的范围:

  • i : 1 ∼ n i:1\sim n i:1n

(这个不需要解释了吧……)

  • j : 0 ∼ 3 × i j:0\sim 3\times i j:03×i

(因为物品的重量被处理过,当原来的 W i = W 1 W_i=W_1 Wi=W1 时这个物品的重量为 0 0

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值