Description
在一个 N 行 M 列的字符网格上, 恰好有 2 个彼此分开的连通块。每个连通 块的一个格点与它的上、下、左、右的格子连通。如下图所示:
现在要把这 2 个连通块连通, 求最少需要把几个’.’转变成’X’。上图的例子中, 最少只需要把 3个’.’转变成’X’。下图用’*’表示转化为’X’的格点。
Input
第 1 行:2 个整数 N 和 M(1<=N,M<=50) 接下来 N 行,每行 M 个字符, ’X’表示属于某个连通块的格点,’.’表示不属于某 个连通块的格点
Output
第 1 行:1 个整数,表示最少需要把几个’.’转变成’X’
Sample Input
6 16
…………….
..XXXX….XXX…
…XXXX….XX…
.XXXX……XXX..
……..XXXXX…
………XXX….
Sample Output
3
思路简析
法一:先用一个小深搜区分出两个连通块的点,再用广搜搜出每个连通块1的点到每个连通块2的点上的距离,每次用min()更新最小值。
代码实现如下(找的一位Pal帮忙打的,还是有点儿良心特此声明):
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,pre[1000000],a[1000000],b[1000000],minn,ans=1e10;
int x[4]={
1,-1,0,0},y[4]={
0,0,1,-1};
char map[100