BM64 最小花费爬楼梯

1.题目描述

给定一个整数数组 cost cost  ,其中 cost[i] cost[i]  是从楼梯第i i 个台阶向上爬需要支付的费用,下标从0开始。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
 

请你计算并返回达到楼梯顶部的最低花费。

数据范围:数组长度满足 1≤n≤105 1≤n≤105  ,数组中的值满足 1≤costi≤104 1≤costi​≤104 

示例1

输入:

[2,5,20]

返回值:

5

说明:

你将从下标为1的台阶开始,支付5 ,向上爬两个台阶,到达楼梯顶部。总花费为5   

示例2

输入:

[1,100,1,1,1,90,1,1,80,1]

返回值:

6

说明:

你将从下标为 0 的台阶开始。
1.支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
2.支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
3.支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
4.支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
5.支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
6.支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。    

2.解题思路

定义一个dp数组,dp[i]表示爬到第i阶楼梯的最小花费是多少。

那么我们就能得到一个递推公式:dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

因为每一次能爬一个或者两个台阶,所以要上到第i阶楼梯,需要从i-1和i-2这两阶楼梯出发,那么选择哪一个方法呢?就取决于这两种方案中花费代价哪个更小。

直到我们爬上了第n阶楼梯,dp[n]就是我们到达楼梯顶部所需花费的最小代价

3.代码实现

import java.util.*;


public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param cost int整型一维数组 
     * @return int整型
     */
    public int minCostClimbingStairs (int[] cost) {
        // write code here
        int n = cost.length;
        int[] dp = new int[n+1];
        dp[0] = 0; 
        dp[1] = 0;
        for (int i = 2; i <= n; i++) {
            dp[i] = Math.min(dp[i-1] + cost[i-1],dp[i-2] + cost[i-2]);
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值