高效面试之位运算

本文探讨了位运算在解决计算问题中的高效性,特别是如何利用位运算进行加法和求绝对值的操作。通过举例说明,阐述了如何通过按位与、按位异或来实现加法,以及如何通过特定的位操作获取正数和负数的绝对值,避免溢出问题。
摘要由CSDN通过智能技术生成
一.技巧
1.特殊数&或者!
2.本身异或为0,与0异或为本身,满足交换律
例:不借助第三数 交换两数
3.取反加1
求相反数
4.巧妙分组处理(16bit位的数)
分为8组分组需要与0xAAAA或者0x5555相与, 交换位置需要移动1位)
a&0xAAAA                     10 10, 10 10, 10 10, 10 10
 (a&0xAAAA)>>1             10 10, 10 10, 10 10, 10 10  
a&0X5555                      0101,0101,0101,0101
(a&0X5555)<<1          0101,0101,0101,0101 
 (a&0xAAAA)>>1   | (a&0X5555)<<1

分为4组分组需要与0xCCCC或者0x3333相与, 交换位置需要移动2位)
a&0xCCCC                        1100, 1100, 1100, 1100.
(a&0xCCCC)>>2                   1100, 1100, 1100, 1100
0x3333                              00 11,00 11,0011,00 11
                                     0011,0011,0011,0011
分为2组分组需要与0xF0F0或者0x0F0F相与, 交换位置需要移动4位)
0xF0F0                      1111,0000, 1111,0000.    
                                          1111,0000, 1111,0000. 
                                 0000, 1111,0000, 1111
                         0000, 1111,0000, 1111
分为1组分组需要与0xFF00或者0x00FF相与, 交换位置需要移动8位)
  0XFF00                1111,1111,0000,0000.   
                 0000,0000, 1111,1111
5.异或模拟加法

0&0=0;0&1=0; 1&0=0; 1& 1 = 1

0|0=0;     0|1=1;      1|0=1;     1|1=1;

0^0=0;   0^1=1;     1^0=1;    1^1=0;

异或运算是不是和二进制加法很像,缺少进位而已?后面用逻辑运算实现加法讲解

6.常用等式
(1)-n=~(n-1)=~n+1 //求绝对值使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值