Spark Streaming 中使用kafka低级api+zookeeper 保存 offset 并重用 以及 相关代码整合

    在 Spark Streaming 中消费 Kafka 数据的时候,有两种方式分别是 1)基于 Receiver-based 的 createStream 方法和 2)Direct Approach (No Receivers) 方式的 createDirectStream 方法,详细的可以参考 Spark Streaming + Kafka Integration Guide,但是第二种使用方式中  kafka 的 offset 是保存在 checkpoint 中的,如果程序重启的话,会丢失一部分数据,可以参考  Spark & Kafka - Achieving zero data-loss

本文主要讲在使用第二种消费方式(Direct Approach)的情况下,如何将 kafka 中的 offset 保存到 zookeeper 中,以及如何从 zookeeper 中读取已存在的 offset。

大致思想就是,在初始化 kafka stream 的时候,查看 zookeeper 中是否保存有 offset,有就从该 offset 进行读取,没有就从最新/旧进行读取。在消费 kafka 数据的同时,将每个 partition 的 offset 保存到 zookeeper 中进行备份,具体实现参考下面代码

    val topic : String = "topic_name" //消费的 topic 名字  
        val topics : Set[String] = Set(topic) //创建 stream 时使用的 topic 名字集合  
        val topicDirs = new ZKGroupTopicDirs("test_spark_streaming_group", topic)  //创建一个 ZKGroupTopicDirs 对象,对保存  
        val zkTopicPath = s"${topicDirs.consumerOffsetDir}" //获取 zookeeper 中的路径,这里会变成 /consumers/test_spark_streaming_group/offsets/topic_name  
        val zkClient = new ZkClient("10.4.232.77:2181") //zookeeper 的host 和 ip,创建一个 client  
        val children = zkClient.countChildren(s"${topicDirs.consumerOffsetDir}") //查询该路径下是否字节点(默认有字节点为我们自己保存不同 partition 时生成的)  
        var kafkaStream : InputDStream[(String, String)] = null     
        var fromOffsets: Map[TopicAndPartition, Long] = Map()   //如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置  
        if (children > 0) {   //如果保存过 offset,这里更好的做法,还应该和  kafka 上最小的 offset 做对比,不然会报 OutOfRange 的错误  
            for (i <- 0 until children) {  
              val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}")  
              val tp = TopicAndPartition(topic, i)  
              fromOffsets += (tp -> partitionOffset.toLong)  //将不同 partition 对应的 offset 增加到 fromOffsets 中  
              logInfo("@@@@@@ topic[" + topic + "] partition[" + i + "] offset[" + partitionOffset + "] @@@@@@")  
            }  
            val messageHandler = (mmd : MessageAndMetadata[String, String]) => (mmd.topic, mmd.message())  //这个会将 kafka 的消息进行 transform,最终 kafka 的数据都会变成 (topic_name, message) 这样的 tuple  
            kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParam, fromOffsets, messageHandler)  
        }  
        else {  
            kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParam, topics) //如果未保存,根据 kafkaParam 的配置使用最新或者最旧的 offset  
        }  
        var offsetRanges = Array[OffsetRange]()  
        kafkaStream.transform{ rdd =>  
          offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges //得到该 rdd 对应 kafka 的消息的 offset  
          rdd  
        }.map(msg => msg._2).foreachRDD { rdd =>       
          for (o <- offsetRanges) {  
            val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}"  
            ZkUtils.updatePersistentPath(zkClient, zkPath, o.fromOffset.toString)  //将该 partition 的 offset 保存到 zookeeper  
            logInfo(s"@@@@@@ topic  ${o.topic}  partition ${o.partition}  fromoffset ${o.fromOffset}  untiloffset ${o.untilOffset} #######")  
          }  
          rdd.foreachPartition(  
            message => {  
              while(message.hasNext) {  
                logInfo(s"@^_^@   [" + message.next() + "] @^_^@")  
              }  
            }  
          )  
        }  

使用上面的代码,我们可以做到 Spark Streaming 程序从 Kafka 中读取数据是不丢失

以上部分我们讲了如何在将 offset 保存在 zk 中,以及进行重用,但是程序中有个小问题“如果程序停了很长很长一段后再启动,zk 中保存的 offset 已经过期了,那会怎样呢?”本文将解决这个问题

如果 kafka 上的 offset 已经过期,那么就会报 OffsetOutOfRange 的异常,因为之前保存在 zk 的 offset 已经 topic 中找不到了。所以我们需要在 从 zk 找到 offset 的这种情况下增加一个判断条件,如果 zk 中保存的 offset 小于当前 kafka topic 中最小的 offset,则设置为 kafka topic 中最小的 offset。假设我们上次保存在 zk 中的 offset 值为 123(某一个 partition),然后程序停了一周,现在 kafka topic 的最小 offset 变成了 200,那么用前文的代码,就会得到 OffsetOutOfRange 的异常,因为 123 对应的数据已经找不到了。下面我们给出,如何获取 <topic, parition> 的最小 offset,这样我们就可以进行对比了

    val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}")  
    val tp = TopicAndPartition(topic, i)  
    val requestMin = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.EarliestTime, 1)))  
    val consumerMin = new SimpleConsumer("broker_host", 9092, 10000, 10000, "getMinOffset")  //注意这里的 broker_host,因为这里会导致查询不到,解决方法在下面  
    val curOffsets = consumerMin.getOffsetsBefore(requestMin).partitionErrorAndOffsets(tp).offsets  
    var nextOffset = partitionOffset.toLong  
    if (curOffsets.length > 0 && nextOffset < curOffsets.head) {  // 通过比较从 kafka 上该 partition 的最小 offset 和 zk 上保存的 offset,进行选择  
      nextOffset = curOffsets.head  
    }  
    fromOffsets += (tp -> nextOffset) //设置正确的 offset,这里将 nextOffset 设置为 0(0 只是一个特殊值),可以观察到 offset 过期的现象  

但是上面的代码有一定的问题,因为我们从 kafka 上获取 offset 的时候,需要寻找对应的 leader,从 leader 来获取 offset,而不是 broker,不然可能得到的 curOffsets 会是空的(表示获取不到)。下面的代码就是获取不同 partition 的 leader 相关代码

    val topic_name = "topic_name"     //topic_name 表示我们希望获取的 topic 名字  
    val topic2 = List(topic_name)         
    val req = new TopicMetadataRequest(topic2, 0)  
    val getLeaderConsumer = new SimpleConsumer("broker_host", 9092, 10000, 10000, "OffsetLookup")  // 第一个参数是 kafka broker 的host,第二个是 port  
    val res = getLeaderConsumer.send(req)  
    val topicMetaOption = res.topicsMetadata.headOption  
    val partitions = topicMetaOption match {  
      case Some(tm) =>  
        tm.partitionsMetadata.map(pm => (pm.partitionId, pm.leader.get.host)).toMap[Int, String]  // 将结果转化为 partition -> leader 的映射关系  
      case None =>  
        Map[Int, String]()  
    }  
上面的代码能够得到所有 partition 的 leader 地址,然后将 leader 地址替换掉上面第一份代码中的 broker_list 即可。

到此,在 spark streaming 中将 kafka 的 offset 保存到 zk,并重用的大部分情况都覆盖到了


以上为转载,以下为自己做的代码整合,造了个轮子。

可以配合spark streaming的checkpoint,暂时没有打开,因为spark streaming的checkpoint会保存spark运行的一些状态信息,如果程序作了修改,要从checkpoint启动可能会出错。

    package com.test.streaming  
      
    import kafka.api.{TopicMetadataRequest, PartitionOffsetRequestInfo, OffsetRequest}  
    import kafka.consumer.SimpleConsumer  
    import kafka.message.MessageAndMetadata  
    import kafka.serializer.StringDecoder  
    import kafka.utils.{ZkUtils, ZKGroupTopicDirs}  
    import org.I0Itec.zkclient.ZkClient  
    import org.apache.spark.streaming.dstream.InputDStream  
    import org.apache.spark.{rdd, SparkConf}  
    import org.apache.spark.streaming.kafka.{OffsetRange, HasOffsetRanges, KafkaUtils}  
    import org.apache.spark.streaming.{Seconds, StreamingContext}  
    import kafka.common.TopicAndPartition  
      
    object KafkaTest {  
      def createContext(checkpointDirectory: String) = {  
      
        println("create spark")  
        val topics = "test_tpoics"  
        val group = "test-kafka"  
        val zkQuorum ="10.16.10.191:2181"  
        val brokerList = "10.10.10.196:8092,10.10.10.196:8092"  
        //    val Array(topics, group, zkQuorum,brokerList) = args  
        val sparkConf = new SparkConf().setAppName("Test-SparkDemo-kafka").setMaster("local[3]")  
        sparkConf.set("spark.streaming.kafka.maxRatePerPartition","1")  
        val ssc = new StreamingContext(sparkConf, Seconds(2))  
        //    ssc.checkpoint(checkpointDirectory)  
        val topicsSet = topics.split(",").toSet  
        val kafkaParams = Map[String, String](  
          "metadata.broker.list" -> brokerList,  
          "group.id" -> group,  
          "zookeeper.connect"->zkQuorum,  
          "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString  
        )  
        val topicDirs = new ZKGroupTopicDirs("test_spark_streaming_group",topics)  
        val zkTopicPath = s"${topicDirs.consumerOffsetDir}"  
        val hostAndPort = "10.16.10.191:2181"  
        val zkClient = new ZkClient(hostAndPort)  
        val children = zkClient.countChildren(zkTopicPath)  
        var kafkaStream :InputDStream[(String,String)] = null  
        var fromOffsets: Map[TopicAndPartition, Long] = Map()  
        if (children > 0) {  
          //---get partition leader begin----  
          val topicList = List(topics)  
          val req = new TopicMetadataRequest(topicList,0)  //得到该topic的一些信息,比如broker,partition分布情况  
          val getLeaderConsumer = new SimpleConsumer("10.16.10.196",8092,10000,10000,"OffsetLookup") // low level api interface  
          val res = getLeaderConsumer.send(req)  //TopicMetadataRequest   topic broker partition 的一些信息  
          val topicMetaOption = res.topicsMetadata.headOption  
          val partitions = topicMetaOption match{  
            case Some(tm) =>  
              tm.partitionsMetadata.map(pm=>(pm.partitionId,pm.leader.get.host)).toMap[Int,String]  
            case None =>  
              Map[Int,String]()  
          }  
          //--get partition leader  end----  
          for (i <- 0 until children) {  
            val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}")  
            val tp = TopicAndPartition(topics, i)  
            //---additional begin-----  
            val requestMin = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.EarliestTime,1)))  // -2,1  
            val consumerMin = new SimpleConsumer(partitions(i),8092,10000,10000,"getMinOffset")  
            val curOffsets = consumerMin.getOffsetsBefore(requestMin).partitionErrorAndOffsets(tp).offsets  
            var nextOffset = partitionOffset.toLong  
            if(curOffsets.length >0 && nextOffset < curOffsets.head){  //如果下一个offset小于当前的offset  
              nextOffset = curOffsets.head  
            }  
            //---additional end-----  
            fromOffsets += (tp -> nextOffset)   
          }  
          val messageHandler = (mmd : MessageAndMetadata[String, String]) => (mmd.topic, mmd.message())   
          kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)  
        }else{  
          println("create")  
          kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)  
        }  
        var offsetRanges = Array[OffsetRange]()  
        kafkaStream.transform{  
          rdd=>offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges  
            rdd  
        }.map(msg=>msg._2).foreachRDD{rdd=>  
          for(offset <- offsetRanges ){  
            val zkPath = s"${topicDirs.consumerOffsetDir}/${offset.partition}"  
            ZkUtils.updatePersistentPath(zkClient,zkPath,offset.fromOffset.toString)  
          }  
          rdd.foreachPartition(  
            message=>{  
              while(message.hasNext){  
                println(message.next())  
              }  
            })  
        }  
        ssc  
      }  
      
      def main(args: Array[String]) {  
      
        val checkpointDirectory = "kafka-checkpoint2"  
        System.setProperty("hadoop.home.dir","D:\\Program Files\\hadoop-2.2.0")  
        val ssc = StreamingContext.getOrCreate(checkpointDirectory,  
          () => {  
            createContext(checkpointDirectory)  
          })  
        ssc.start()  
        ssc.awaitTermination()  
      }  
    }  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值