陈利人 面试题 对于一个n位正整数a,去掉其中任意k(k<=n)个数字后,剩下的数字按原次序排列可以组成一个新的正整数。设计一个删数算法,使得剩下的数字组成的正整数最小。

这是一道面试题,要求设计一个算法,在一个n位正整数a中删除k个(k≤n)数字,使得剩余数字组成的数最小。文中包含了问题分析、时间复杂度讨论及实现程序。
摘要由CSDN通过智能技术生成

题目


对于一个n位正整数a,去掉其中任意k(k<=n)个数字后,剩下的数字按原次序排列可以组成一个新的正整数。设计一个删数算法,使得剩下的数字组成的正整数最小。例如,a=13243221,k=5,输出:121。


分析


一个n位数,删去k位后,也就是剩下一个 n-k位 数,那么这个数要最小,我们就要保证我们我们得出的数是所有删除后得到的数的最小值。那么怎么保证呢?
问题转换一下,如果最后就剩下一位,那么无意结果就是这些数字的最小值; 如果最后剩下两位呢,那么我们所要结果的最高位肯定在给定数的哪个区间呢,在这个区间(从左往右数第一位,从右往左数第二位),且是其中的最小值,而次最高位呢,肯定在哪个区间呢,在这个区间(刚才最高位+1,从右往左数第一位即是最后一位);如果最后剩下三位数呢,有点长举个例子,数 20192,k=2,那么就是剩下三位数,最高位即百位肯定在这个区间((从左往右数第一位,从右往左数第三位)),取最小数0即从左往右第二位,那么剩下的十位数字肯定在(刚才得到的那个最小值的位加一即从左往右数第三位,从右往左数第二位)这个区间里,取最小即是从左往右第三位1,接着最后结果的个位数字肯定在这个区间里(刚才得到的那个最小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值