A题:题意背景就不描述了,阅读题。
总的说来就是,有4种优先级的东西,按照优先级挨着输出。如果优先级相同就输出较前面的。
rat>woman==child>man>captain。
数据比较小且优先级种类少,我挨着扫4遍就行了。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <string>
using namespace std;
string a[105],b[105];
int main()
{
int n;
while(scanf("%d",&n) != EOF)
{
for(int i=0;i<n;i++)
{
cin >> a[i] >> b[i];
}
for(int i=0;i<n;i++)
{
if(b[i] == "rat")
cout <<a[i] << endl;
}
for(int i=0;i<n;i++)
{
if(b[i] == "woman" || b[i] == "child")
cout <<a[i]<< endl;
}
for(int i=0;i<n;i++)
{
if(b[i] == "man")
cout <<a[i]<< endl;
}
for(int i=0;i<n;i++)
{
if(b[i] == "captain")
cout << a[i] << endl;
}
}
return 0;
}
B题:n个有rankl的士兵进行训练。相同优先级视为一个group,每个group每轮只能有一个人训练升级。问需要多少代价把所有士兵的rank都提升为k。
统计每个优先级的士兵数,然后模拟训练过程,嗯哼!好像完了。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
using namespace std;
int n,k;
int a[111]= {0};
int rank[111]= {0};
int main()
{
cin >> n >> k;
for (int i=1; i<=n; i++)
{
cin >> a[i];
rank[a[i]]++;
}
int ans = 0;
bool ok = true;
while (ok)
{
ok=false;
for (int i=k-1; i>=1; i--)
{
if (rank[i] > 0)
{
rank[i]--;
rank[i+1]++;
ok = true;
}
}
if (ok) ans++;
}
cout << ans << endl;
return 0;
}
C题:
Bulls and Cows是一个猜数字游戏,一个人写下一个数字,另一个人猜这个数字,其中b代表位置正确的数字有几个,而c代表位置不正确的数字有几个。
其中猜的数字由 0 ~ 9 的不重复的4个数字组成。
给你n组数据,每行有三个数字,第一个是你猜的数字,第二个是b,第三个是c
现在如果可能猜出的结果有1个输出该数字,如果不止一个输出Need more data
如果结果不肯能出现输出Incorrect data。
直接暴力求解10000以内所有的结果,如果遇到求解的数字为符合所有的可能,记cnt++
如果cnt == 1 输出结果,cnt == 0 输出Incorrect data,如果cnt > 1输出Need more data。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
struct Node
{
int num[4];
int a,b;
} node[20];
int ans[4];
int vis[11];
bool ok(int num)
{
memset(vis,0,sizeof(vis));
int t;
for(int i = 0; i < 4; i++)
{
t = num % 10;
if(vis[t])
{
return false;
}
ans[i] = t;
vis[t] = 1;
num /= 10;
}
return true;
}
int main()
{
int n;
char arr[5];
while(scanf("%d",&n) != EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%s %d %d",arr,&node[i].a,&node[i].b);
for(int j = 0; j < 4; j++)
{
node[i].num[j] = arr[j] - '0';
}
}
int cnt1,cnt2,cnt;
cnt = 0;
int res;
for(int i = 1; i < 10000; i++)
{
if(ok(i))
{
int j;
for(j = 0; j < n; j++)
{
cnt1 = cnt2 = 0;
for(int k = 0; k < 4; k++)
{
if(ans[k] == node[j].num[k])
{
cnt1++;
}
if(vis[node[j].num[k]])
{
cnt2++;
}
}
if(cnt1 != node[j].a || cnt2 - cnt1 != node[j].b)
{
break;
}
}
if(j == n)
{
res = i;
cnt++;
}
}
}
if(cnt == 1)
{
for(int i = 0; i < 4; i++)
{
printf("%d",res%10);
res /= 10;
}
printf("\n");
}
else if(cnt > 1)
{
printf("Need more data\n");
}
else
{
printf("Incorrect data\n");
}
}
return 0;
}
D题:在一个字符串里面按着hello字符顺序找hello,找到就YES,否则NO;
贪心,挨着找过去就行了。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <string>
using namespace std;
string s;
string word = "hello";
int main()
{
while(cin >> s)
{
int flag = 0;
for(int i=0;i<s.size();i++)
{
if(s[i] == word[flag])
flag++;
if(flag == 5)
break;
}
if(flag == 5)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
E题:生成保证一个数是前面出现所有数的约数的数组,保证数组最长。
只要枚举前一个数的所有约数,只要这个数能将前面一个数整除,必然能将前面的所有的数整除。
贪心思想:保证当前生出的约数最大,后面可找到更多的数。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <string>
using namespace std;
int main()
{
int n;
cin >> n;
cout << n;
while(n>1)
{
int i;
for(i=2; i<n; i++)
if(n%i == 0)
{
n = n/i;
cout << " " << n;
break;
}
if(i == n)
{
cout << " " << 1;
break;
}
}
return 0;
F题:给一个序列代表一排树。现在需要把这排树砍成beautiful的。怎么叫beautiful的看题目。
呜~ 大概你需要明白2件事情。
1.beautiful sequence is can be determined with any member
2.at least one tree will remain the same height.
然后我们就统计一下,前一半中相对距离相同数量最多的那些树,后一半镜像统计,这个数量表示的就是我们最多可以不动的树的数量。
然后用n个去减掉这个最大数量,就是需要改变最小数量。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100010;
int a[maxn], d[maxn];
int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
memset(d,0,sizeof(d));
int k = n/2 + n%2;
for(int i=1; i<=k; i++)
{
if(a[i]-i+1>0)
d[a[i]-i+1]++;
}
for(int i=n; i>k; i--)
if(a[i]+i-n>0)
d[a[i]+i-n]++;
int ma = -1;
for(int i=1; i<=100000; i++)
ma = max(ma, d[i]);
printf("%d\n", n - ma);
}
return 0;
}