有N个硬币,每个硬币有无数个,问有多少方案

方法一 ,dp[i][j]表示取前i种硬币满足价值为j的方案数
dp[i][j] =sum(dp[i-1][j-k*a[i]]) k<=j/a[i]

/*
TASK:money
LANG:C++
 */
#include<iostream>
#include<cstdio>
#include<stack>
#include<queue>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<map>


using namespace std;

typedef long long LL;
const int INF = 1E9 + 10;
const int maxn = 25 + 10;
const int N = 1E4 + 10;

int n,v;
int a[maxn];
LL dp[maxn][N];
void solve()
{
    scanf("%d%d",&n,&v);
    for(int i = 0;i<n;i++)
    {
        scanf("%d",&a[i]);
    }
    //处理边界,当总共要拿j元时,如果j是第一种硬币的整数倍,那么ways[0][j] = 1;
    for(int i = 1;i<=v;i++)
    {
        if(i%a[0]==0)
        {
            dp[0][i] = 1;
        }
        else
        {
            dp[0][i]  =  0 ;
        }
    }
    //cout<<1<<endl;
    //处理边界,当总共要拿0元的时候,方案数为1
    for(int i =  0;i<n;i++)
    {
        dp[i][0] =1;    
    }
    //cout<<1<<endl;
    for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            //第i种硬币拿取的个数
            //当从第i种硬币中得到的钱不超过j时
            for(int k = 0;k*a[i]<=j;k++)
            {
                dp[i][j] +=dp[i-1][j-k*a[i]];   
            }
        }
    }
    LL ans = dp[n-1][v];
    printf("%lld\n",ans);

}
int main()
{
    freopen("money.in","r",stdin);
    freopen("money.out","w",stdout);
    solve();
    return 0;
}

方法二
dp[i][j] = dp[i-1][j] + dp[i-1][j-a[i]]
dp[i][j] = dp[i-1][j]

/*
TASK:money
LANG:C++
 */
#include<iostream>
#include<cstdio>
#include<stack>
#include<queue>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<map>


using namespace std;

typedef long long LL;
const int INF = 1E9 + 10;
const int maxn = 25 + 10;
const int N = 1E4 + 10;

int n,v;
int a[maxn];
LL dp[maxn][N];
void solve()
{
    scanf("%d%d",&n,&v);
    for(int i = 0;i<n;i++)
    {
        scanf("%d",&a[i]);
    }
    //处理边界,当总共要拿j元时,如果j是第一种硬币的整数倍,那么ways[0][j] = 1;
    for(int i = 1;i<=v;i++)
    {
        if(i%a[0]==0)
        {
            dp[0][i] = 1;
        }
        else
        {
            dp[0][i]  =  0 ;
        }
    }
    //cout<<1<<endl;
    //处理边界,当总共要拿0元的时候,方案数为1
    for(int i =  0;i<n;i++)
    {
        dp[i][0] =1;    
    }
    //cout<<1<<endl;
    /*for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            //第i种硬币拿取的个数
            //当从第i种硬币中得到的钱不超过j时
            for(int k = 0;k*a[i]<=j;k++)
            {
                dp[i][j] +=dp[i-1][j-k*a[i]];   
            }
        }
    }*/
    for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            if(j-a[i]>=0)
            {
                dp[i][j] = dp[i-1][j] + dp[i][j-a[i]];
            }
            else
            {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    LL ans = dp[n-1][v];
    printf("%lld\n",ans);

}
int main()
{
    freopen("money.in","r",stdin);
    freopen("money.out","w",stdout);
    solve();
    return 0;
}



/*
TASK:money
LANG:C++
 */
#include<iostream>
#include<cstdio>
#include<stack>
#include<queue>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<map>


using namespace std;

typedef long long LL;
const int INF = 1E9 + 10;
const int maxn = 25 + 10;
const int N = 1E4 + 10;

int n,v;
int a[maxn];
LL dp[maxn][N];
LL d[N];
void solve()
{
    scanf("%d%d",&n,&v);
    for(int i = 0;i<n;i++)
    {
        scanf("%d",&a[i]);
    }
    //处理边界,当总共要拿j元时,如果j是第一种硬币的整数倍,那么ways[0][j] = 1;
    for(int i = 0;i<=v;i++)
    {
        if(i%a[0]==0)
        {
            d[i] = 1;
        }
        else
        {
            d[i]  =  0 ;
        }
    }
    //cout<<1<<endl;
    //处理边界,当总共要拿0元的时候,方案数为1
    /*for(int i =  0;i<n;i++)
    {
        dp[i][0] =1;    
    }*/
    //cout<<1<<endl;
    /*for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            //第i种硬币拿取的个数
            //当从第i种硬币中得到的钱不超过j时
            for(int k = 0;k*a[i]<=j;k++)
            {
                dp[i][j] +=dp[i-1][j-k*a[i]];   
            }
        }
    }*/
/*  for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            if(j-a[i]>=0)
            {
                dp[i][j] = dp[i-1][j] + dp[i][j-a[i]];
            }
            else
            {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    LL ans = dp[n-1][v];*/
    for(int i =1;i<n;i++)
    {
        for(int j =1;j<=v;j++)
        {
            if(j-a[i]>=0)
            {
                d[j] = d[j] + d[j-a[i]];
            }
            else
            {
                d[j] = d[j];
            }
        }

    }   
    printf("%lld\n",d[v]);

}
int main()
{
    freopen("money.in","r",stdin);
    freopen("money.out","w",stdout);
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值