求2个正整数的最大公约数 4种解法

 最优解法:欧几里得算法(原版欧几里得书中,使用的不是除法,而是减法)

又称辗转相除法


//辗转相除法
public static int Gcd(int m, int n)
{
    int r;
    while (n != 0)
    {
        r = m % n;
        m = n;
        n = r;
    }
    return m;
}
//辗转相减法
public static int Gcd1(int m, int n)
{
    while (m != n)
    {
        if (m > n)
            m -= n;
        else
            n -= m;
    }
    return n;
}

解法3:连续整数检测算法

​//穷举法
public static int Gcd(int m, int n)
{
    int t = m < n ? m : n;
    while (true)
    {
        if (m % t == 0)
        {
            if (n % t == 0)
            {
                return t;
            }
        }
        t--;
    }
}

​

解法4:

1.找到2个数的所有质数。

2.找到第一步的2个数的所有公质数

3.找到的质因数相乘,其结果是最大公约数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值