一、问题描述
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
二、思路描述
这个题我一开始是想到了先遍历第一列,因为是有序的,所以可以先找到最后一个小于该元素所在的行,然后在去遍历这个行,但是代码写完了发现,在最坏的情况下,时间复杂度是o(m*n),虽然在力扣上提交过了,但是还是觉得应该优化一下,那么对于查找的情况,优化一般就是二分查找,二分查找既可以用在行上,也可以在列上,但是在第一列上进行二分查找时,要查找的元素是最后一个小于该元素的,这个地方返回的值是l,而且对于mid,应该这么计算:mid=(r-l+1)+l;
三、代码
class Solution {
//74. 搜索二维矩阵
public boolean searchMatrix(int[][] matrix, int target) {
int r = 0;
int mid = 0;
int posRow = binarySearchRow(target, matrix);
if(posRow<0){
return false;
}
return binarySearchCol(target,matrix,posRow);
}
int binarySearchRow(int target, int[][] nums) {
int l = -1;
int r = nums.length - 1;
while (l < r) {
int mid = (r - l + 1) / 2 + l;
if (nums[mid][0] == target) {
return mid;
}
if (nums[mid][0] > target) {
r = mid - 1;
}
if (nums[mid][0] < target) {
l = mid;
}
}
return l;
}
boolean binarySearchCol(int target, int[][] nums, int posRow) {
int l = 0;
int r = nums[0].length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (nums[posRow][mid] == target)
return true;
if (nums[posRow][mid] > target) {
r = mid - 1;
}
if (nums[posRow][mid] < target) {
l = mid + 1;
}
}
return false;
}
}