力扣 74、搜索二维矩阵

一、问题描述

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

二、思路描述

这个题我一开始是想到了先遍历第一列,因为是有序的,所以可以先找到最后一个小于该元素所在的行,然后在去遍历这个行,但是代码写完了发现,在最坏的情况下,时间复杂度是o(m*n),虽然在力扣上提交过了,但是还是觉得应该优化一下,那么对于查找的情况,优化一般就是二分查找,二分查找既可以用在行上,也可以在列上,但是在第一列上进行二分查找时,要查找的元素是最后一个小于该元素的,这个地方返回的值是l,而且对于mid,应该这么计算:mid=(r-l+1)+l;

三、代码

class Solution {
    //74. 搜索二维矩阵
   public boolean searchMatrix(int[][] matrix, int target) {
        int r = 0;
        int mid = 0;
        int posRow = binarySearchRow(target, matrix);
        if(posRow<0){
            return false;
        }
        return binarySearchCol(target,matrix,posRow);
    }

    int binarySearchRow(int target, int[][] nums) {
        int l = -1;
        int r = nums.length - 1;
        while (l < r) {
            int mid = (r - l + 1) / 2 + l;
            if (nums[mid][0] == target) {
                return mid;
            }
            if (nums[mid][0] > target) {
                r = mid - 1;
            }
            if (nums[mid][0] < target) {
                l = mid;
            }
        }
        return l;
    }

    boolean binarySearchCol(int target, int[][] nums, int posRow) {
        int l = 0;
        int r = nums[0].length - 1;
        while (l <= r) {
            int mid = (l + r) / 2;
            if (nums[posRow][mid] == target)
                return true;
            if (nums[posRow][mid] > target) {
                r = mid - 1;
            }
            if (nums[posRow][mid] < target) {
                l = mid + 1;
            }
        }
        return false;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值