【问题描述】
给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒)。请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现。
【输入格式】
第一行输入一个正整数n。
以下n行每行两个字母,表示这两个字母需要相邻。
【输出格式】
输出满足要求的字符串。
如果没有满足要求的字符串,请输出“No Solution”。
如果有多种方案,请输出前面的字母的ASCII编码尽可能小的(字典序最小)的方案
【输入样例】
4
aZ
tZ
Xt
aX
【输出样例】
XaZtX
【数据范围】
不同的无序字母对个数有限,n的规模可以通过计算得到
给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒)。请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现。
【输入格式】
第一行输入一个正整数n。
以下n行每行两个字母,表示这两个字母需要相邻。
【输出格式】
输出满足要求的字符串。
如果没有满足要求的字符串,请输出“No Solution”。
如果有多种方案,请输出前面的字母的ASCII编码尽可能小的(字典序最小)的方案
【输入样例】
4
aZ
tZ
Xt
aX
【输出样例】
XaZtX
【数据范围】
不同的无序字母对个数有限,n的规模可以通过计算得到
解题思路:根据题意可以把该题与欧拉路径联系起来,将字母通过ASCII码转化为数字,看作图的顶点,每次输入的第一个字母到第二个字母连一条无向边。判断输入所得的图是否有欧拉路径,如有则输出欧拉路径的字典序最小方案。需要注意的是,为了计算欧拉路径,需用边集数组来进行存储,在输入完成后,应将每个点发出的边,按字典序由小到大排序,输出时需按照后序序列逆序输出。判断是否有欧拉路径时,可以根据欧拉路径的性质,无向图中要么所有点的度为偶数(欧拉回路),要么只有两个点的度为奇数(欧拉路径)进行判断。对于n的范围宜多不宜少。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=1005;
int N;
char s[5];
struct edge{int x,idx;};
vector<edge>g[60]; //运用边集数组建立存储结构
int du[60],vis[maxn],vis1[60];
vector<int>eg;
bool cmp(edge aa,edge bb)
{
return aa.x<bb.x;
}
void DFS(int i)
{
for(int k=0;k<g[i].size();k++)
{
int j=g[i][k].x,id=g[i][k].idx;
if(vis[id]) continue;
vis[id]=1;
DFS(j);
}
eg.push_back(i);
}
int main()
{
freopen("48.in","r",stdin);
//freopen("48.txt","w",stdout);
scanf("%d",&N);
memset(du,0,sizeof(du));
memset(vis1,0,sizeof(vis1));
for(int i=1;i<=N;i++)
{
scanf("%s",s);
int a=s[0]-'A'+1;
int b=s[1]-'A'+1;
g[a].push_back((edge){b,i});
g[b].push_back((edge){a,i});
du[a]++;
du[b]++;
vis1[a]=1;
vis1[b]=1;
}
for(int i=1;i<60;i++)
sort(g[i].begin(),g[i].end(),cmp); //注意保证字典序最小
int s,cnt=0,ok=1;
for(int i=1;i<60;i++) //判断是否有欧拉回路
if(du[i]%2==1) cnt++;
if(cnt>2 || cnt==1) ok=0;
if(ok==0) printf("No Solution\n");
else
{
for(int i=1;i<60;i++)
if(vis1[i]==1)
{
s=i;
break;
}
for(int i=1;i<60;i++)
if(du[i]%2==1)
{
s=i;
break;
}
memset(vis,0,sizeof(vis));
DFS(s);
for(int i=eg.size()-1;i>=0;i--) //注意逆序输出
printf("%c",eg[i]-1+'A');
}
return 0;
}