1. (3’)结果填空
假设有两种微生物 X 和 Y
X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。
一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。
现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。
如果X=10,Y=90 呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
【分析】以0.5分钟为一个单位时间计算
源代码:
#include <stdio.h>
int main()
{
int x,y;
int i; //记录0.5分钟数
while(scanf("%d %d",&x,&y)!=EOF)
{
for(i=1;i<=120;i++)
{
if(i%6==0)
x*=2;
if(i%4==0)
y*=2;
if(i%2==1)
y-=x;
if(y<0) //设此步意在说明如果y<0 ,这说明全部的Y已经死亡,循环不再继续进行
break;
printf("%ds: x:%d,y:%d\n",i,x,y);
}
}
return 0;
}
程序截图:
【答案】0 94371840
2. (4’)结果填空
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式:
ABCDE * ? = EDCBA
他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!”
华生:“我猜也是!”
于是,两人沉默了好久,还是没有算出合适的结果来。
请你利用计算机的优势,找到破解的答案。
把 ABCDE 所代表的数字写出来。
【分析】算法核心:求数的逆序数、数位分离与查重
源代码:
法一:暴力枚举
#include <stdio.h>
int main()
{
int a,b,c,d,e,f;
for(a=1;a<10;a++) //第一位数不能为0
{
for(b=0;b<10;b++)
{
if(b==a) //从第二位开始,数字取值范围为0~9,且互不相同
continue;
for(c=0;c<10;c++)
{
if(c==a||c==b)
continue;
for(d=0;d<10;d++)
{
if(d==a||d==b||d==c)
continue;
for(e=0;e<10;e++)
{
if(e==a||e==b||e==c||e==d)
continue;
for(f=2;f<10;f++) //由于?代表的数字不能为0且左右等式两个数不可能相同,故取值范围为2~9
{
if((a*10000+b*1000+c*100+d*10+e)*f==(e*10000+d*1000+c*100+b*10+a))
printf("%d%d%d%d%d\n",a,b,c,d,e);
}
}
}
}
}
}
return 0;
}
法二:根据原式特点,进一步缩小符合条件的数的范围至 10234~50000(各位数字不同,?处代表的数字最小为2,EDCBA为5位数)
#include <stdio.h>
#define maxn 6
int a[maxn]; //保存分离出的个位数
int main()
{
int i,j,k,l;
int t,wei,rnum,flag;
for(i=10234;i<50000;i++) //ABCDE范围
{
j=0;
t=i;
wei=10000;
rnum=0; //数的逆序数
flag=1; //判重标记
while(t) //从后往前分离各位数
{
a[j]=t%10;
rnum+=(a[j]*wei);
t/=10;
wei/=10;
j++;
}
for(k=0;k<j;k++) //发现分离出的个位数有重复,flag置0,不再进行后续操作
{
for(l=k+1;l<j;l++)
{
if(a[k]==a[l])
{
flag=0;
break;
}
}
}
if(flag==1)
{
for(k=2;k<=9;k++) //遍历? 发现ABCDE*?=EDCBA时则输出i
{
if(rnum==i*k)
printf("%d\n",i);
}
}
}
return 0;
}
程序截图:
【答案】21978
3. (5’)结果填空
有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。
等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......”
请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。
如果有多个可能的答案,请列出所有答案,每个答案占一行。
格式是:人数,人数,...
例如,有一种可能是:20,5,4,2,0
【分析】从船长入手,平分喝了4轮酒后倒下,且正好喝了1瓶。设4轮分别有i j k l个人,且i>j>k>l,因此通过枚举,若1.0/i+1.0/j+1.0/k+1.0/l=1时,符合条件(注意数值类型转换)
#include <stdio.h>
int main()
{
int i,j,k,l;
double sum=0;
for(i=2;i<=20;i++)
{
for(j=2;j<i;j++)
{
for(k=2;k<j;k++)
{
for(l=2;l<k;l++)
{
sum=1.0/i+1.0/j+1.0/k+1.0/l;
if(sum==1)
printf("%d,%d,%d,%d,0\n",i,j,k,l);
}
}
}
}
return 0;
}
程序截图:
【答案】12, 6, 4, 2, 0
15, 10, 3, 2, 0
18, 9, 3, 2, 0
20, 5, 4, 2, 0
4. (8’)结果填空
某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:
每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。
每位选手都有一个起步的分数为10分。
某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?
如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。
你的任务是算出所有可能情况。每个答案占一行。
【分析】串的相关操作
源代码:
法一:暴力枚举(串中各个元素为0或1,枚举之)
#include <stdio.h>
#define maxlen 11
int main()
{
int i,j,sc;
char i1,j1,k1,l1,m1;
char i2,j2,k2,l2,m2;
char str[maxlen];
for(i1='0';i1<'2';i1++)
{
for(j1='0';j1<'2';j1++)
{
for(k1='0';k1<'2';k1++)
{
for(l1='0';l1<'2';l1++)
{
for(m1='0';m1<'2';m1++)
{
for(i2='0';i2<'2';i2++)
{
for(j2='0';j2<'2';j2++)
{
for(k2='0';k2<'2';k2++)
{
for(l2='0';l2<'2';l2++)
{
for(m2='0';m2<'2';m2++)
{
j=0;
str[j++]=i1,str[j++]=j1,str[j++]=k1,str[j++]=l1,str[j++]=m1,str[j++]=i2,str[j++]=j2,str[j++]=k2,str[j++]=l2,str[j++]=m2;
str[j]='\0';
sc=10;
for(i=0;i<10;i++)
{
if(str[i]=='0')
sc-=(i+1);
else
sc*=2;
}
if(sc==100)
printf("%s\n",str);
}
}
}
}
}
}
}
}
}
}
return 0;
}
法二:递归遍历(从后往前,掌握递归思想)
#include <stdio.h>
void f(char s[],int n,int score) //score为完成第n题之后的分数
{
if(n==0) //回到比赛开始时,得分为10,结束递归,输出串
{
if(score==10)
puts(s);
return;
}
s[n-1] = '0'; //第n题答错
f(s,n-1,score+n);
if(score%2==0) //第n题答对
{
s[n-1]='1';
f(s,n-1,score/2);
}
}
int main()
{
char s[10]; //初始化串
s[10]='\0';
f(s,10,100); //初始情况:已答完第10题,已得100分,从后往前计算
return 0;
}
程序截图:
【答案】0010110011
0111010000
1011010000