python语言
文章平均质量分 89
本专栏是学习python语言的学习笔记
喝咖啡的CV
今天不学习,明天变垃圾。
展开
-
[学习笔记] python深度学习---第七章 深度学习最佳实践
如果只有元数据,那么可以使用one-hot编码,然后用密集连接网络来预测价格。如果只有文本描述,那么可以使用循环神经网络或一维卷积神经网络。如果只有图像,那么可以使用二维卷积神经网络。但是怎么才能同时使用这三种数据呢?一种朴素的方法是训练三个独立的模型,然后对三者的预测做加权平均。但是这种办法可能不是最优的,因为模型提取的信息可能存在冗余。更好的方法是使用一个可以同时查看所有可用的输入模态的模型,从而联合学习一个更加精确的数据模型---这个模型具有三个输入分支。 在多输入模型、多输出模型和类图原创 2022-10-08 14:01:15 · 478 阅读 · 0 评论 -
[学习笔记] python深度学习---第三章 神经网络入门
[学习笔记] python深度学习---第三章 神经网络入门原创 2022-09-17 20:21:12 · 679 阅读 · 0 评论 -
「学习笔记」python深度学习---第二章 神经网络的数学基础
神经网络的数学基础原创 2022-09-11 19:46:20 · 645 阅读 · 0 评论 -
[学习笔记] python深度学习---第五章 深度学习用于计算机视觉
1. 卷积神经网络使用预计算机视觉任务的最佳机器学习模型。即使在非常小的数据集上也可以从头开始训练一个卷积神经网络,而且得到的结果还不错。2. 在小型数据集上的额主要问题是过拟合。在处理图像数据时,数据增强是一种降低过拟合的强大方法。3. 利用特征提取,可以很容易将现有的卷积神经网络复用于新的数据集。对于小型图像数据集,这是一种很有价值的方法。4. 作为特征提取的补充,还可以使用微调,将现有模型之前学到的一些数据表示应用于新问题。这种方法可以进一步提高模型性能。5. 卷积神经网络通过学习模块原创 2022-10-05 10:50:03 · 839 阅读 · 0 评论 -
[学习笔记] python深度学习---第四章 机器学习基础
首先,你必须定义所面对的问题。(1)你的输入数据是什么?你要预测什么?只有拥有可用的训练数据,你才能学习预测某件事情。(2)你面对的是什么类型的问题?是二分类问题、多分类问题、标量回归问题、向量回归问题,还是多分类、多标签问题?或者是其他问题,比如聚类、生成或强化学习?确定问题类型有助于你选择模型架构、损失函数等。明确了输入、输出以及所使用的数据,你才能做出假设。(3)假设输出是可以根据输入进行预测的。(4)假设可用数据包含足够多的信息,足以学习输入和输出之间的关系。原创 2022-09-30 22:22:05 · 718 阅读 · 0 评论