Pandas|DataFrame| DataFrame中的nan值处理

1. 方法简介

1.1 DataFrame.dropna()

DataFrame.dropna()方法的作用:是删除含用空值或缺失值得行或列。
语法为:dropna(axis=0,how=‘any’,thresh=None,subset=None,inplace=False)
参数:

  1. axis:确定过滤的行或列,取值可以为
    (1) 0或index:删除包含缺失值的行,默认为0。
    (2) 1或columns:删除包含缺失值的列。
  2. how:确定过滤的标准,取值可以为:
    (1)any:默认值,如果存在NaN值,就删除该行或该列。//有一个就删除行或列
    (2)all:如果所有值都是NaN值,就删除该行或该列。 //全部都是才删除行或列
  3. thresh:表示有效数据量的最小要求,比如thresh=3,要求该行或该列至少有三个不是NaN值时将其保留。
  4. subset:表示在特定的字集中寻找NaN值
  5. inplace:表示是否在原数据上操作,如果设为True,则表示直接修改原数据;如果设为False,则表示修改原数据的副本,返回新数据

1.2 .DataFrame.fillna()

语法为:fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
参数:

  1. value:用于填充的空值的值。
  2. method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。
  3. axis:轴。0或’index’,表示按行删除;1或’columns’,表示按列删除。
  4. inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。
  5. limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)
  6. downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。

2. 案例

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(32).reshape(8, 4), columns=list("abcd"))
df.loc[1, 'a'] = 2
df.loc[1, 'c'] = 2.0
df.loc[6, 'c'] = np.nan
df.loc[3, 'c'] = 10
df.loc[3, ['c', 'd']] = np.nan
df["year"] = '2023'
df["date"] = ['08-25','08-26','08-27','08-28','08-29','08-30','08-31','09-01']
# 合并数据
df["ydate"] =df["year"].map(str) +"-"+ df["date"].map(str) 
df["高温"] = ['15°',  '16°', '20°', '19°', '20°',  '22°', '24°', '23°']
df["低温"] = ['10°',  '11°', '18°', '17°', '10°',  '18°', '20°', '17°']
df["空气质量"] = ['优', '良
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值