给定一个长度为 n
的整数数组,你的任务是判断在最多改变 1
个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中所有的 i
(1 <= i < n),满足 array[i] <= array[i + 1]
。
示例 1:
输入: [4,2,3] 输出: True 解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
示例 2:
输入: [4,2,1] 输出: False 解释: 你不能在只改变一个元素的情况下将其变为非递减数列。
说明:
n
的范围为 [1, 10,000]。
解题思路:
1.遍历整个数组,如果发现不满足非递减数列的元素,count++。将元素做处理,使其满足非递减数列。
2.不满足非递减数列的元素有两种情况:第一种是在一个非递减数列中插入一个奇异点i(nums[i+1]>=nums[i-1]),使得nums[i]<nums[i-1].这种情况将nums[i+1]赋值给nums[i]就行了;第二种情况是当nusm[i+1]<nums[i-1]时,这时候需要将nums[i-1]的值赋给nums[i].
3.当count==0时反回false,退出循环。
代码:
class Solution {
public boolean checkPossibility(int[] nums) {
int count = 0;
for(int i=1; i<nums.length && count<2; i++){
if(nums[i-1]<=nums[i]){
continue;
}
count++;
if(i>1 && nums[i]<nums[i-2]){
nums[i]=nums[i-1];
}
else{
nums[i-1] = nums[i];
}
}
return count<2;
}
}
ps:提供另一种思路,可以将题目等价为:判断是否存在这样一个元素,去掉这个元素使得序列满足非递减序列。