665. 非递减数列 leetcode

给定一个长度为 n 的整数数组,你的任务是判断在最多改变 1 个元素的情况下,该数组能否变成一个非递减数列。

我们是这样定义一个非递减数列的: 对于数组中所有的 i (1 <= i < n),满足 array[i] <= array[i + 1]

示例 1:

输入: [4,2,3]
输出: True
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。

示例 2:

输入: [4,2,1]
输出: False
解释: 你不能在只改变一个元素的情况下将其变为非递减数列。

说明:   n 的范围为 [1, 10,000]。

解题思路:

1.遍历整个数组,如果发现不满足非递减数列的元素,count++。将元素做处理,使其满足非递减数列。
2.不满足非递减数列的元素有两种情况:第一种是在一个非递减数列中插入一个奇异点inums[i+1]>=nums[i-1]),使得nums[i]<nums[i-1].这种情况将nums[i+1]赋值给nums[i]就行了;第二种情况是当nusm[i+1]<nums[i-1]时,这时候需要将nums[i-1]的值赋给nums[i].
3.当count==0时反回false,退出循环。

代码:
class Solution {
    public boolean checkPossibility(int[] nums) {
     int count = 0;
        for(int i=1; i<nums.length && count<2; i++){
            if(nums[i-1]<=nums[i]){
                continue;
            }
            count++;
            if(i>1 && nums[i]<nums[i-2]){
                nums[i]=nums[i-1];
            }
            else{
                nums[i-1] = nums[i]; 
            }
        }
        return count<2;
}
}
ps:提供另一种思路,可以将题目等价为:判断是否存在这样一个元素,去掉这个元素使得序列满足非递减序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值