树形DP代码汇总

这篇博客介绍了如何使用树形动态规划(DP)解决一类问题:在拥有100个节点的树中,调整苹果分布,使得所有节点上的苹果数量方差最小,目标是让每个节点的苹果数尽可能接近。通过描述dp状态和转移过程,博主展示了如何在O(n^3)的时间复杂度内完成这一任务。
摘要由CSDN通过智能技术生成


zoj  3231

给你一棵100个点的树,每个点上有一些苹果,然后现在让你将一些点上的部分苹果转移到其他点上,使得最后所有点上的苹果数量的方差最小,通俗的讲,就是使得每个点上的苹果的数量尽可能的平均,即任意两个点的苹果数量的差距不超过1,所以这里有一个特点,点数只有100,即那些多1个苹果的节点也不超过100,所以状态就很好想了

dp[i][j]表示i 子树有 j个点的苹果的数量是tot/n向上取整的,因为处理当前节点的时候还要考虑当前节点是不是向上取整,所以转移的时候可以先用临时数组记录下最优状态(相当于处理出一个泛化的物品),将子节点的状态都合并好,然后再单独考虑当前节点,这样就方便多了,合并的过程是枚举背包容量即普通的O(n*c^2)合并的

这样的话复杂度就是O(n^3);


//============================================================================
// Name        : wuyiqi.cpp
// Author      :
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include<cstdio>
#include<cstring>
#include<set>
#include<string>
#include<iostream>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<climits>
#include<numeric>
#include<time.h>
#include<queue>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define lowbit(x) ((x)&(-(x)))
#define sqr(x) ((x)*(x))
#define PB push_back
#define MP make_pair
typedef vector<int> VI;
typedef vector<string> VS;
typedef pair<int, int> PII;
#define foreach(e,x) for(vector<PII>::iterator e=x.begin();e!=x.end();++e)
#define For(i,a,b) for(int i=a;i<=b;i++)
typedef long long lld;
const int maxn = 1010;
const int inf = ~0u >> 2;
inline void Max(int &a, int b) {
	if (b > a)
		a = b;
}
inline void Min(lld &a, lld b) {
	if (b < a)
		a = b;
}
vector<PII> edge[110];
int sz[110] , sum[maxn] , val[maxn] ,up[maxn];
int n;
void dfs(int u,int f)
{
	sz[u] = 1;
	sum[u] = val[u];
	foreach(it,edge[u])	{
		int v=it->first;
		int w=it->second;
		if(v==f) continue;
		dfs(v,u);
		up[v] = w;
		sz[u] += sz[v];
		sum[u] += sum[v];
	}
}
const lld INF = 10000000000000LL;
lld dp[maxn][110];
lld tmp[maxn][110];
int CAP;
int Aver;
lld ABS(lld x) {
	return x < 0 ? -x : x;
}
void Gao(int u,int f)
{
    	 foreach(it,edge[u]) {
		int v = it->first;
		if(v == f) continue;
		Gao(v,u);
    	 }
	fill(tmp[0],tmp[n+1],INF);
	tmp[0][0] = 0;
	int cnt=0;
	foreach(it,edge[u]) {
		int v = it->first;
		if(v == f) continue;
		int w = it->second;
		for(int j=0;j<=CAP;j++) {
			for(int k=0;j+k<=CAP;k++) {
				Min(tmp[cnt+1][j+k],tmp[cnt][j] + dp[v][k] );
			}
		}
		cnt++;
	}
	for(int i=0;i<=CAP;i++) {
		lld add = ABS(((lld)Aver * sz[u] + i -sum[u] )) * up[u];
		if(i==0) dp[u][i] = tmp[cnt][i] + add;
		else dp[u][i] = min(tmp[cnt][i],tmp[cnt][i-1]) + add; 
	}
}
int main() {
    int a,b,c;
    while(scanf("%d",&n)!=EOF) {
    	int sum=0;
    	for(int i=1;i<=n;i++) edge[i].clear(),scanf("%d",&val[i]),sum+=val[i];
    	for(int i=1;i<n;i++) {
    		scanf("%d%d%d",&a,&b,&c);
    		a++;b++;
    		edge[a].PB(MP(b,c));
    		edge[b].PB(MP(a,c));
    	}
    	dfs(1,0);
        Aver  = sum / n;
        CAP = sum % n;
        fill(dp[0],dp[n+1],INF);
        up[1] = 0;
        Gao(1,0);
        printf("%lld\n",dp[1][CAP]);
    }
	return 0;
}

/*
3
1 2 3
0 1 1
0 2 1

3
1 3 3
0 1 3
0 2 4

2
1 2
0 1 1


1
3
0
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值