缓存穿透:
现象:
- 应用服务器压力变大了;
- redis命中率降低;
- 一直查询数据库;
原因:
1、redis查询不到数据
2、出现非正常url访问
解决方案:
1、对空值缓存:
如果存在一个查询返回的数据为空(不管数据是否存在),我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过5分钟;
2、设置可访问的名单(白名单):
使用bitMaps类型定义一个可以访问的名单,名单id作为bitmaps的偏移量,每次访问和bitmap里面的id做比较,如果访问id不到bitmaps里面,进行拦截,不允许访问;
3、采用布隆过滤器:
Bloom Filter 是1970年由布隆提出的,它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数);
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误判识别和删除困难,它将所有可能存在的数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被这个bitmaps拦截掉,从而避免了对底层存储系统的查询压力;
4、进行实时监控:
当发现Redis的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务;
缓存击穿:
现象:
1、数据库的访问压力瞬时增加;
2、redis里面没有出现大量key过期;
3、redis正常运行;
原因:
redis某个key过期了,大量访问中使用这个key(热门访问key);
key可能会在某些时间点被超高并发的访问,是一种非常”热点“的数据,这个时候需要考虑一个问题:缓存被”击穿“问题;
解决方案:
1、预先设置热门数据
在redis高峰访问之前,把一些热门数据提前存入到redis里面,加大这些热门数据key的时长;
2、实时调整
现场监控哪些数据热门,实时调整key的过期时长;
3、使用锁(缺点:效率低)
就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db;
先使用缓存工具的某些带成功操作返回值的操作(比如redisde setnx)去set一个 mutex key;
当操作返回成功时,再进行load db的操作,并回设缓存,最后删除mutex key;
当操作返回失败,证明有线程再load db,当前线程睡眠一段时间再重试整个get缓存的方法;
缓存雪崩:
现象
数据库压力变大,服务器崩溃;
原因
在极少时间段,查询大量key的集中过期现象;
解决方案
1、构建多级缓存架构
nginx缓存+redis缓存+其他缓存;
2、使用锁或队列
用加锁或者队列的方式保证不会有大量的线程对数据库一次行进行读写,从而避免失效时大量的并发请求落到底层存储系统上;(不适用高并发情况)
3、设置过期标志更新缓存(过期时或者快过期时去更新)
记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存;
4、将缓存失效时间分散开
比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这个每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
分布式锁:
出现原因:
随业务发展,原单体单机部署的系统演化为分布式集群系统后,由于分布式系统多线程,多进程并且分布在不同的机器上,这将使原单机部署情况下的并发控制策略失效,单纯的Java API并不能提供分布式锁的能力,为了解决这个问题就需要一种跨JVM的互斥机制来控制共享资源的访问。
分布式锁实现方案:
1、基于数据库实现分布式锁;
2、基于缓存(redis等);
3、基于Zookeeper;
各自优缺点:
1、性能:redis最高;
2、可靠性:zookeeper最高;
分布式锁需满足
1、任意时刻,只有一个客户端能持有锁;
2、不会发生死锁;
3、解铃还须系铃人(可通过加锁是value写入uuid实现(使用lua脚本实现验证和解锁这两个操作的原子性));
4、加锁和解锁必须具有原子性;
redis6新功能:
1、acl(更细粒度的权限控制);
2、IO多线程(仍然是单线程+多路IO复用,Redis多线程只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程);
多线程IO默认不开启,需要在配置文件中配置
io-threads-do-reads yes
io-threads 4
3、工具支持cluster
之前老版本的reids想要搭建集群需要单独安装ruby环境,Redis5将redis-trib.rb的功能集成到了redis-cli;