【信息检索】

这篇博客详细介绍了互联网信息资源的分类,包括政府、科研、教育、媒体、商务等,强调了政府信息的价值。此外,讲解了互联网上信息资源的获取方式,如HTTP、HTML、URL、FTP等,并探讨了搜索引擎的工作原理、分类和主要类型。同时,讨论了信息检索的特点、评价标准和方法,以及元搜索引擎和目录型检索工具的工作机制。最后,涉及了信息组织、查询算法模型以及基于内容的图像和音频检索技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.政府信息(名词解释,1.1章节)

谁发布,有价值,三特点

是指国际组织、各国政府及相关部门所发布的信息,是互联网上最具有价值的一部分信息,由于出自官方,所以具有可靠性、权威性等特点,另一个突出的特点是廉价。大部分政府信息都是免费的,网民可以获得许多没有权限限制的政府文件。


2.科研信息(名词解释,1.1章节)

主要指各专业学术机构所设立的网站及其相关信息


3.教育信息(名词,1.1)

主要是由大学设立的网站及其相关信息,互联网已经发展成为一种重要的教育手段。


4.媒体信息(名词,1.1)

主要包括各类信息媒体的网站资源。


5.商务信息(名词,1.1)

材制供价,调研预,采招推服

有各种原料、成品的求信息、格行情,也有各种市场查、市场究、分析测信息,还有各种购、标、广与务信息等。


6.互联网上信息资源的分类(简答,1.3)

(1)web信息资源
(2)Telnet信息资源
(3)ftp信息资源
(4)用户组信息资源


7.超文本传输协议http:(名词1.3.1)

通信协议,请求览查验

是浏览器与web服务器相互通信,传输,响应用户请求的协议。Web服务器通过用户提出的http请求,为用户提供信息浏,数据询,安全证等方面的服务。


8.超文本标记语言html:(名词,1.3.1)

是一种专门编程语言,规定和描述了文件显示的具体格式。也即web的描述语言,用于编制通过WWW显示的超文本文件。


9.通用资源定位程序url:(名词,1.3.1)

类地,三部分

又称网络资源的统一定位格式或统一资源定位器,实际上是一个用以标识文档类型及其所在网络地址的字符串,包括3部分:所使用的传输协议服务器名称,该服务器上定位文档的全路径


10.主页(名词,1.3.1)

是浏览器访问某个web服务器上的信息时第一个链接到的文档


11.浏览器(名词,1.3.1)

程序显示互动

指web服务客户端的浏览程序,是显示网页服务器或档案系统内的文件,并让用户与这些文件互动的一种软件。


12.Telnet协议(名词,1.3.2)

互联网远程登录服务的标准协议和主要方式。


13.访问telnet信息资源的一般过程:(简答,1.3.2)

连证用销

(1)在telnet命令中输入远程计算机的域名或IP地址,在本地计算机与远程计算机建立一个TCP连接
(2)连接成功后,在本地终端上输入用户名和口令以获得系统认证或访问授权。
(3)获得访问权限后,按给定的访问权限,访问权限允许的相关资源或使用该系统提供的各种互联网服务。
(4)访问结束,本地终端与远程主机撤销连接。


14.通过telnet方式提供的信息资源主要有:(简答,1.3.2)

库检告录

政府部门、研究机构对外开放的数据库,某些商业性联机检索系统,一些大学和研究机构开设的电子布告栏系统BBS,还有许多大中型图书馆的在线公共检索目录OPAC等。


15.FTP信息资源主要功能(名词,1.3.3)

是完成从一个系统到另一个系统完整的文件拷贝,即在联网计算机之间传输文件


16.用户组信息资源优点:(简答,1.3.4)

直接交互、全球互联、主题鲜明。


17.用户组信息资源(名词,1.3.4)

趣组织多

是由一组对某一特定主题事物有共同兴的网络用户组成的邮件群或电子论坛,是一种有组的电子邮件系统,用户在其间通过电子邮件(Email)进行一对的交流。


18.互联网信息资源的评价的标准(必考1.4.2)

对互联网信息资源的评价一般是以网站网页为评价单位。


19.互联网信息资源的评价的方法:(简答,1.4.3)

调计统客

(1)定性评价
(2)定量评价即利用数量分析方法,对相关数据进行查采集、统分析,进而做出较系观的评判。(名词,1.4.3)


20.互联网信息检索的特点(简答,2.1.2)

在这里插入图片描述

(1)无限的检索范围,动态的检索对象
(2)丰富的检索内容,新兴的检索领域
(3)强大的检索工具,低廉的检索费用


21.信息组织(名词,2.2)

在这里插入图片描述

把数据按照一定的结构、顺序、排列方式组织起来,或者说是按照信息查询的需求,对数据根据其特征进行组织;


22.自动归类(名词,2.2.3)

比归

是分析网页的内容特征,并与事先拟定的各种类别中的特征描述进行比较,然后将对象归入为特征最为接近的一类,并赋予相应的分类号。


23.自动聚类(名词,2.2.4)

比原定

是从待分类网页中提取出特征,然后将提出的特征进行比较,再根据一定的原则或需要,将具有相同或相近特征的对象定义为一类,这个类必须是事先拟定好的。


24.信息查询(名词,2.3)

通过搜索、定位以取得数据的过程。


25.查询算法模型(简答,2.3)

布展向率

较为普遍的查询算法模型包括布尔检索模型、扩展布尔模型、空间向量模型和概率检索模型。


26.空间向量模型的基本思想(简答,2.3.3)

向似排

文档和检索提问都可以用向量表示,检索过程就是计算相似度,可以根据相似度的不同,对检索结果进行排序


27.互联网检索工具的性能评价有哪些(简答,2.4)

(1)收录范围
(2)检索功能
(3)检索效率
(4)检索结果的处理和展示
(5)用户界面设计


28.检索功能评价指标(简答,2.4.2)

检索方式、检索技术、检索限定


29.检全率(名词,2.4.3)

实际检出的文件数目与文件数目总量的比率,较高的检全率可以节省用户从数据库中查找相关信息的时间。


30.检准率(名词,2.4.3)

实际检出的文件数目与真正应该被检出的文件数目的比率,较高的检准率可以节省用户从检出的所有文档中过滤掉无关信息的时间。


31.搜索引擎(名词,3.1)

接帮查供果

是一种能够通过互联网接受用户的查询指令,帮助用户迅速从网上查找所需要的信息,并向用户提供符合其查询要求的搜索结果列表及相关信息的检索系统。


32.搜索引擎工作原理:(论述,展开描述,3.1.2)

抓索排显

抓取
—从互联网上抓取网页
索引
—建立索引数据库
搜索排序
—在索引数据库中搜索排序
显示
—对搜索结果进行处理显示


33.网络检索工具分类(简答,3.2.1)

象域境

(1)按检索对象划分:web资源检索工具,非web资源检索工具
(2)按检索领域划分:综合型网络检索工具、专业型、特殊型
(3)按运行环境划分:互联网搜索工具、网站内、桌面


34.搜索引擎主要类型(简答,3.2.2)

通垂(三特定,三特点)元(统站)

(1)通用搜索引擎
(2)垂直搜索引擎:是针对某一特定领域、某一特定人群、某一特定需求提供的信息搜索和相关服务,其特点是专、精、深,且具有行业色彩。
(3)元搜索引擎:通过一个统一的用户界面,帮助用户在多个搜索引擎中选择和利用适用的搜索引擎来实现检索操作;或同时调用多个搜索引擎,为用户实现一站式检索。(名词,3.2.2)


35.通用搜索引擎(名词,3.3)

相对于专业搜索引擎而言,通用搜索引擎是一种大众资源,试图为每个人提供各种类型的信息。


36.国外搜索引擎(简答,3.3.1)

(1)Google:全球第一大搜索引擎
(2)Bing:用以取代Live Search的搜索引擎。


37.垂直搜索引擎(名词,3.4.1)

三特定,三特点

是针对某一特定领域、某一特定人群、某一特定需求提供的信息搜索和相关服务,其特点是专、精、深,且具有行业色彩。


38.垂直搜索引擎的特征(简答,3.4.3)

采加索

信息集,信息工,信息检


39.信息采集深度(名词,3.4.3)

从采集深度来看,与通用搜索引擎相比,垂直搜索引擎提供的是更为专业的行业检索


40.视频搜索有哪些:(简答,3.4.3)

优酷网(垂直搜索引擎),搜库


41.元搜索引擎分类有哪些(简答,3.5.1)

目元线桌并串

(1)按照检索机制:搜索引擎录、搜索引擎
(2)运行方式:在线式元搜索引擎、面式
(3)工作方式:行式元搜索引擎、行式


42.请求提交(名词,3.5.2)

实现用户个性化的检索要求设置。


43.接口代理(名词,3.5.2)

翻不要

将用户的检索请求翻译成符合不同搜索引擎本地化要求的格式。


44.结果显示(名词,3.5.2)

去合出

将所有源搜索引擎检索结果去重、合并、输出处理等。


45.信息加工(名词,3.5.2)

结构化信息提取加工

垂直搜索引擎与其他搜索引擎最大的区别是,对网页信息进行了结构化信息提取加工
即将网页的非结构化数据,提取成特定的结构化信息数据。


46.元搜索引擎优缺点:(简答,3.5.4)

面展服无虑,靠灵序盖式

优点:
(1)信息覆盖面大,检索效率高
(2)检索工具扩展性能强
(3)服务多样化
(4)无需考虑网页索引数据库的建立和维护
缺点:
(1)检索结果全面性可靠性较差
(2)不能灵活控制结果的输出
(3)检索结果排序不够理想
(4)信息覆盖面存在局限性
(5)检索式处理较复杂


47.目录型检索工具如何工作:(简答,4.1)

人采专收分存组

目录型检索工具一般采用人工或半人工方式采集和存储网络信息,由专业人员对网络资源进行调查收集,并遵循某种分类体系进行分类、存储和组织


48.目录型网络检索工具的特点有哪些?(论述,4.1.2)

易准导明兼

(1)面向用户易用
(2)提供准确性较高的信息内容
(3)提供导航作用良好的检索体系结构
(4)以明确的主题和对象为中心设置确定类目
(5)有兼容性强的多元类目


49.目录型检索工具分类体系的多种形式:(简答,4.1.3)

主科图配

(1)主题分类法
(2)学科分类法
(3)图书分类法
(4)分面组配


50.网络资源目录(选择,4.1.3)

最有影响的是早期的Yahoo


51.目录型网络检索工具的使用方法:(简答,4.1.4)

广 特 类 主目 工

(1)采用广度优先查询法
(2)注意了解各个检索工具的收录特点,选择适当的工具。
(3)掌握各目录型检索工具的分类体系
(4)关注热门主题和常用目录
(5)关注开放目录型检索工具


52.目录型检索工具主要适用于:(简答,4.1.5)

浏览检索起点

(1)用户进行较笼统的主题浏览和检索
(2)当用户尚未形成很精确的检索概念时,采用主题指南作为检索起点非常有效。


53.Galaxy(选择,4.2.1)

是互联网是最早按专题检索万维网信息的网络目录之一,是第一个既可以搜索又可以浏览的分类目录。


54.学科信息门户(SIG或SBIG):(名词,4.2.2)

科组理工,库导

是图书馆员和学科专家,对网上某个学科的有关信息资源,经过系统的组织、有序化整理和规范的加工
形成可供用户浏览和检索的目录数据库
为科研和教学提供可靠的学科网络信息导航服务的系统。


55.基于文本的图像检索技术(TBIR)可以用来帮助图像分析、标引的web文档内容包括:(简答,5.1.1)

名址代围标超链

(1)图像文件名网址
(2)图像的代替文字
(3)图像周围的文字
(4)图像所在页面的标题
(5)图像的超链接
(6)图像所在网页彼此间的链接


56.基于内容的图像搜索可以用来处理图像的主要特点包括:(简答,5.1.1)

(1)颜色
(2)纹理
(3)形状


57.基于文本的图像搜索引擎:(简答,5.1.2)

百度图片号称世界最大的中文图片搜索引擎


58.基于内容的图像搜索引擎查询模式:(简答,5.1.3)

例绘述

(1)按例查询:用户提供一个查询图片,在数据库中搜索相似图片
(2)按绘查询:用户在类似画板的接口上面进行简单的绘画,以此为标准进行查询
(3)按描述查询:例如指定条件可以为30%黄色;70%蓝色等。


59.QBIC(选择,5.1.3)

是第一个商业化的基于内容的图像检索系统。


60.示例查询

例征配回

指由用户提交一个音频例子,系统自动提取这个例子的特征,然后从数据库中识别出匹配这些特征的若干样本按序返回给用户。(名词,5.2.1)


61.基于文本的音频搜索引擎(简答,5.2.2)

(1)ALLMusic
(2)MP3.com
(3)其他音频检索工具:Last.fm是世界上最大的音乐交流平台


62.基于内容的音频搜索引擎:(简答,5.2.2)

(1)Themefinder
(2).Midomi
(3)其他类似工具


63.视频检索处理的关键技术:(简答,5.2.3)

边关征

(1)镜头界检测
(2)键帧抽取
(3)特提取


64.视频检索主要方法:(简答,5.2.3)

关动事

(1)基于键帧的检索
(2)基于运的检索
(3)基于故单元的浏览检索


65.网络环境下检索图书信息的几种主要方式:(简答,6.1)

(1)世界各地图书馆的馆藏目录系统
(2)联合目录数据库:互联网WorldCat是OCLC系统提供的一个在线联合目录数据库,是世界上最庞大、最完整、收录图书馆最多的联合目录。
(3)网上书店
亚马逊网上书店是互联网上最大、最著名的图书及音像制品销售公司,其总部设在美国的西雅图。
(4)电子图书数据库和服务提供站点


66.万方数字化期刊子系统(名词,6.2.3)

该系统有收费式与免费式。收费式针对授权用户,检索时需要输入用户名及口令,可以浏览、检索、显示数据库中的全部信息;免费式针对非授权用户,浏览与检索功能同授权用户,但显示的检索结果信息不完全,只有文献题目、关键词、及分类号等。


67.JSTOR(名词,6.2.3)

是一个对西文过期期刊进行数字化的非营利机构。


68.Elsevier SDOS(名词,6.2.3)

荷兰爱思维尔出版集团是全球最大科技与医学文献出版发行商之一。


69.HighWire(名词,6.2.3)

是全球最大的提供免费全文学术文献的出版商。


70.学术会议和会议文献:(简答,6.3)

学术会议是科学工作者进行学术交流、沟通学术思想、发布研究成果、提高学术水平的重要场所。会议文献是在各种学术会议上所发表的论文、报告、讲演等的统称。主要特点是时效性强,反映新成果较快,质量较高,专业性较突出,往往代表着某一学科或专业领域的最新研究水平。


71.会议文献(名词,6.3.2)

是一种特殊的研究资源,检索会议文献一般要通过一些检索工具、数据库。


72.学位论文(名词,6.4)

指高等院校或学术研究机构的学生为获得某种学位而撰写的科学论文


73.标准及其性质:(名词、简答,6.6)

标准指按规定程序制定,经公认权威机构或主管机关批准的一整套在特定领域内必须执行的规格、规则、技术要求等规范性文献。标准性质可分为技术标准管理标准


74.参考信息(名词,7.1.1)

指人名、地名、机构、事件、统计数据等一类数据、事实信息,是人们在工作研究和日常生活中经常要查考、引用的信息。


75.传记资料(名词,7.3.1)

记录历史人物或当代著名人物的生平资料等相关信息,这些信息一般包括出生年月、学历、职务、经历、家庭、政治背景、学术观点、团体、著述、评价、通信方式等。


76.网上白页(名词,7.3.1)

是专用于查找个人信息的特殊工具,这些个人信息包括电话号码,E-mail地址、邮政编码、通讯住址等。


77.IAF(选择,7.3.3)

是目前世界上最好的黄白页信息查询工具之一。


78.哥伦比亚世界地名词典(选择,7.4.2)

号称世界上最权威的地名百科全书。


79.Sky Auction(选择,7.4.4)

是一个非常流行的拍卖网站


80.年鉴(名词,7.5.3)

每年出版的统计数据和事实的汇编,兼有现期性和回溯性内容。其包含的地区和学科领域一般比较规范,也可能限于某一特定国家或特定的领域。


81.Infoplease(选择,7.5.3)

是一个集百科全书、字典、地图集和年鉴于一体的网站


82.机构名录(名词,7.6.1)

又称目录、指南、便览、行名录,用来查找机构团体相关信息的一类检索工具。


83.黄页(名词,7.6.3)

是国际通用的按企业性质和产品类别编排的工商电话号码簿,相当于一个城市或地区的工商企业的户口本,国际惯例用黄色纸张印刷,故称黄页。


84.Yahoo本地搜索(名词,7.6.3)

内容十分丰富,除了向用户提供企业的电话号码和详细地址、网址等基本信息,还同时向用户提供相应的城区地图和驾驶地图、相关企业平分排序等评价信息。


85.词典(名词,7.7.1)

是根据一定的编撰目的汇集词语,并加于描述,说明,通常按字顺序排列,供人们查找词语信息的工具书。一般提供词语的拼写、读音、语法、含义、用法及音节划分等,有时还提供派生词、辞源、同义词、反义词、缩略语、方言俚语等相关知数。


86.统计资料(名词,7.8.1)

是对各种统计工作产生的大量原始数据进行搜集、整理、汇编而成,是最基本的经济和管理信息资源


87.5W1H(名词,8.1.1)

What:要找的信息的中心主题是什么
Who:目标信息是否涉及特定的群体或者个人
Where:目标信息是否限于特定的地区
When:目标信息是否关联某个特定时间
Why:这个主题有什么意义或影响
How:是不是有特定的方法


88.上位词(名词,8.1.2)

指概念上外延更广的关键词,或者可以说每一个关键词所覆盖的信息范围都是它的上位词所覆盖信息范围的子集。


89.下位词(名词,8.1.2)

指概念上内涵更窄的关键词。


90.关键词的组配(简答,8.1.3)

And:用and连接的两个关键词都必须出现在检索结果中
Or:必须有一个
And not:紧跟着后面的不能出现
引号操作符:检索结果必须与词组的行式完全一致
括号:用来强制指定运算的先后顺序


91.多义词问题最好的解决办法(简答,8.3.4)

是在搜索之前先自己这个问题,然后用短语、用多个关键词或者其他的词语来代替多义词作为搜索关键词。


92.利用浏览器的“查找”功能(简答,8.3.6)

Host:name限定查询计算机主机的网页
Image:filename限定查询特定的影像文件
Title:text限定查询文章标题中含有特定词汇的网页


93.搜索引擎的瓶颈(简答,9.1.2)

(1)搜索引擎的索引能力:索引、索引速度
(2)迎战深网
深网又称暗网,通过搜索引擎难以发现、索引、检索到信息内容的网页
(3)搜索结果的排序与输出


94.人肉搜索(名词,9.1.3)

利用人工参与来完成搜索或提纯搜索引擎所提供信息的一种机制。


95.网络检索技术(选择,9.2.1)

要以提高搜索工具的信息服务功能完善搜索服务为核心。


96.网络信息搜索服务的发展方向:(简答,9.2.2)

(1)个性化
(2)多样化
(3)社会化

<think>好的,用户想了解如何训练文本检索模型,需要教程和方法。首先,我应该先回顾已有的知识,特别是用户提供的引用内容。引用中提到了引用1关于深度学习文本检索的模型训练,包括数据准备、模型结构、训练过程和评估优化。还有引用2提到了ColBERT的具体步骤,比如数据预处理、预训练模型下载、索引构建和查询执行。引用3讨论了不同模型的性能和泛化能力,引用4提到了关键字和向量检索。 用户的问题集中在训练方法上,所以需要整合引用中的相关信息,特别是引用1和引用2的内容。可能需要分步骤讲解训练流程,包括数据准备、模型选择、训练过程、评估和优化,以及应用部署。需要确保使用正确的中文术语,并符合LaTeX格式要求,比如数学公式用$符号包裹。 另外,用户可能需要了解具体的实现步骤,比如数据预处理怎么做,模型结构有哪些选择,如何选择损失函数和优化器,以及如何评估模型效果。同时,考虑到引用3提到的不同模型的性能和计算成本,应该在教程中提醒用户权衡这些因素,比如是否选择密集检索还是交互式模型,或者是否需要考虑领域适应性问题。 需要检查是否有遗漏的步骤,比如数据增强(如引用1中的随机删除、替换)是否要详细说明。还要注意引用2中提到的预训练模型的使用,可能用户是否需要从头训练还是微调现有模型,这也是训练方法的一部分。 最后,生成相关问题时要围绕训练方法、优化技巧、评估指标和应用场景展开,确保问题与用户查询相关,帮助用户深入理解。例如,如何选择损失函数,如何处理数据不平衡,或者如何提升模型的泛化能力等。</think>### 文本检索模型训练方法教程 #### 1. **数据准备与预处理** - **数据集构建**:需准备包含查询语句和对应相关文本(段落/文档)的标注数据。格式通常为`(query, positive_doc, negative_doc)`三元组,其中负样本可通过随机采样或困难样本挖掘生成[^1]。 - **数据增强**:对文本进行随机删除、替换同义词或调整语序,增强模型鲁棒性。例如,将句子“深度学习用于文本检索”替换为“基于神经网络的文本搜索方法”。 - **分词与编码**:使用BERT等预训练模型的Tokenizer进行分词,生成词向量序列,如输入$E = [e_1, e_2, ..., e_n]$[^2]。 #### 2. **模型架构选择** - **双塔结构**:查询和文档分别通过两个独立编码器生成向量$q$和$d$,相似度计算为$\text{sim}(q,d) = q^T d$。适用于大规模检索场景。 - **交互式模型**(如ColBERT):允许查询和文档的细粒度交互,计算代价更高但精度更优,公式为$\text{score}(Q,D) = \sum_{i=1}^{m} \max_{j=1}^{n} q_i^T d_j$[^2][^3]。 - **混合检索**:结合稠密向量检索与传统BM25算法,提升召回率[^4]。 #### 3. **训练流程** - **损失函数**:常用对比损失(Contrastive Loss)或三元组损失(Triplet Loss),目标是最小化正样本对距离,最大化负样本对距离: $$L = \max(0, \text{sim}(q,d^-) - \text{sim}(q,d^+) + \alpha)$$ 其中$\alpha$为边界超参数。 - **优化策略**: - 使用AdamW优化器,初始学习率设为$3 \times 10^{-5}$; - 采用动态难样本挖掘(Dynamic Hard Negative Mining),每轮训练更新负样本池; - 梯度裁剪防止梯度爆炸。 #### 4. **评估与调优** - **评价指标**:常用Recall@K、MRR(Mean Reciprocal Rank)、NDCG(Normalized Discounted Cumulative Gain)。 - **领域适应**:若目标领域数据稀缺,可使用预训练模型(如ColBERTv2)在MS MARCO等通用数据集上微调。 - **蒸馏技术**:将大型教师模型的知识迁移到轻量级学生模型,降低推理延迟。 #### 5. **部署与应用** - **索引构建**:对文档库预编码并建立FAISS或HNSW索引,实现亚秒级响应。 - **服务化**:通过ONNX或TensorRT加速推理,部署为RESTful API[^4]。 ```python # 简化版双塔模型训练代码框架 import torch from transformers import BertModel, BertTokenizer class DualEncoder(torch.nn.Module): def __init__(self): super().__init__() self.query_encoder = BertModel.from_pretrained('bert-base-uncased') self.doc_encoder = BertModel.from_pretrained('bert-base-uncased') def forward(self, query_input, doc_input): q_emb = self.query_encoder(**query_input).pooler_output d_emb = self.doc_encoder(**doc_input).pooler_output return q_emb, d_emb # 三元组损失计算 def triplet_loss(q_emb, d_pos, d_neg, margin=0.2): pos_sim = torch.matmul(q_emb, d_pos.T).diag() neg_sim = torch.matmul(q_emb, d_neg.T).diag() return torch.relu(neg_sim - pos_sim + margin).mean() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值