14天阅读挑战赛
努力是为了不平庸~
文章目录
一、概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别为二叉搜索树
二、查找操作
若根节点不为空:
如果根节点val = 查找key,则返回true
如果根节点val > 查找key,则在其左子树继续查找
如果根节点val < 查找key,则在其右子树继续查找
否则,返回false
三、插入操作
1.如果树是空树,即root = null,则直接插入即可
2.如果树不是空树,则按照上面查找的逻辑来确定插入的位置,插入新结点。
按照二叉搜索树的性质,查找到插入结点的位置:
root=5 5<10 parent = cur cur = cur.right
root=7 7<10 parent = cur cur = cur.right
root=8 8<10 parent = cur cur = cur.right
root=9 9<10 parent = cur cur = cur.right
四、删除操作
设待删除结点为 cur, 待删除结点的双亲结点为 parent
1.cur.left == null
1. cur 是 root,则 root = cur.right
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right
2. cur.right == null
1. cur 是 root,则 root = cur.left
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left
3. cur.left != null && cur.right != null
1. 需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(最小),用它的值填补到被删除节点中,再来处理该结点的删除问题
五、自实现
public class BinarySearchTree {
static class TreeNode{
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int val){
this.val = val;
}
}
public TreeNode root = null;
public TreeNode search(int val){
TreeNode cur = root;
while (cur != null){
if (val < cur.val){
cur = cur.left;
}else if (val > cur.val){
cur = cur.right;
}else {
return cur;
}
}
return null;
}
public boolean insert(int val){
if (root == null){
root = new TreeNode(val);
return true;
}
TreeNode parent = null;
TreeNode cur = root;
while (cur != null){
if (val < cur.val){
parent = cur;
cur = cur.left;
}else if (val > cur.val){
parent = cur;
cur = cur.right;
}else {
return false;
}
}
TreeNode node = new TreeNode(val);
if (val < parent.val){
parent.left = node;
}else {
parent.right = node;
}
return true;
}
public void inorder(TreeNode root){
if (root == null)return;
inorder(root.left);
System.out.print(root.val + " ");
inorder(root.right);
}
public void remove(int val){
TreeNode parent = null;
TreeNode cur = root;
while (cur != null){
if (val < cur.val){
parent = cur;
cur = cur.left;
}else if (val > cur.val){
parent = cur;
cur = cur.right;
}else {
removeNode(parent,cur);
return;
}
}
return;
}
private void removeNode(TreeNode parent, TreeNode cur) {
if (cur.left == null){
if (cur == root){
root = cur.right;
}else if (cur == parent.left){
parent.left = cur.right;
}else {
parent.right = cur.right;
}
}else if (cur.right == null){
if (cur == root){
root = cur.left;
}else if (cur == parent.left){
parent.left = cur.left;
}else {
parent.right = cur.left;
}
}else {
TreeNode target = cur.right;
TreeNode targetParent = cur;
while (target.left != null){
targetParent = target;
target = target.left;
}
cur.val = target.val;
if (target == targetParent.left){
targetParent.left = target.right;
}else {
targetParent.right = target.right;
}
}
}
}
六、性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个数据集合,如果各个数据插入的次序不同,可能得到不同结构的二叉搜索树:
最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:logN
最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2
问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插入关键码,都可以是二叉搜索树的性能最佳?
可以改进为平衡二叉搜索树,比如AVL树,红黑树等。