题目链接: hdu 4826
题目大意:
一个n*m的迷宫,每个方格有若干金币(可正可负),每个方格最多走一次,从左上角走到右上角,求获得的最大金币数。
设dp[i][j][k] (k = 0, 1, 2) 分别表示向上,下,右三个方向走的最大金币数,发别写出三个方向的递推式。
max(dp[1][m][0], dp[1][m][1], dp[1][m][2])
即是答案。
#include <cstdio>
#include <cstring>
int n, m;
const int maxn = 110;
const int inf = 0x3f3f3f3f;
int Map[maxn][maxn];
int dp[maxn][maxn][3];//分别表示向上,向下,向右
inline int Max(int x, int y){
return x > y ? x : y;
}
inline int Maxx(int x, int y, int z){
x = Max(x, y);
return Max(x, z);
}
int main(){
int t;
scanf("%d", &t);
for(int k = 1; k <= t; k++){
memset(Map, 0, sizeof(Map));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &Map[i][j]);
memset(dp, -inf, sizeof(dp));
dp[1][1][0] = dp[1][1][1] = dp[1][1][2] = Map[1][1];
for(int i = 2; i <= n; i++)
dp[i][1][1] = dp[i-1][1][1] + Map[i][1];//不能写成dp[i][1][1] = max(dp[i-1][1][1] + Map[i][1], Map[i][1]),因为是必须走的
for(int i = 2; i <= m; i++){
for(int j = 1; j <= n; j++)
dp[j][i][2] = Maxx(dp[j][i-1][0], dp[j][i-1][1], dp[j][i-1][2]) + Map[j][i];
for(int j = 1; j <= n; j++)
dp[j][i][1] = Max(dp[j-1][i][1], dp[j-1][i][2]) + Map[j][i];
for(int j = n; j >= 1; j--){
dp[j][i][0] = Max(dp[j+1][i][0], dp[j+1][i][2]) + Map[j][i];
}
}
int ans = Maxx(dp[1][m][0], dp[1][m][1], dp[1][m][2]);
printf("Case #%d:\n%d\n", k, ans);
}
return 0;
}