hdu 4826 Labyrinth

题目链接: hdu 4826

题目大意:

一个n*m的迷宫,每个方格有若干金币(可正可负),每个方格最多走一次,从左上角走到右上角,求获得的最大金币数。

设dp[i][j][k] (k = 0, 1, 2) 分别表示向上,下,右三个方向走的最大金币数,发别写出三个方向的递推式。
max(dp[1][m][0], dp[1][m][1], dp[1][m][2])即是答案。

#include <cstdio>
#include <cstring>
int n, m;
const int maxn = 110;
const int inf = 0x3f3f3f3f;
int Map[maxn][maxn];
int dp[maxn][maxn][3];//分别表示向上,向下,向右
inline int Max(int x, int y){
    return x > y ? x : y;
}
inline int Maxx(int x, int y, int z){
    x = Max(x, y);
    return Max(x, z);
}
int main(){
    int t;
    scanf("%d", &t);
    for(int k = 1; k <= t; k++){
        memset(Map, 0, sizeof(Map));
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= m; j++)
                scanf("%d", &Map[i][j]);
        memset(dp, -inf, sizeof(dp));
        dp[1][1][0] = dp[1][1][1] = dp[1][1][2] = Map[1][1];
        for(int i = 2; i <= n; i++)
            dp[i][1][1] = dp[i-1][1][1] + Map[i][1];//不能写成dp[i][1][1] = max(dp[i-1][1][1] + Map[i][1], Map[i][1]),因为是必须走的
        for(int i = 2; i <= m; i++){
            for(int j = 1; j <= n; j++)
                dp[j][i][2] = Maxx(dp[j][i-1][0], dp[j][i-1][1], dp[j][i-1][2]) + Map[j][i];
            for(int j = 1; j <= n; j++)
                dp[j][i][1] = Max(dp[j-1][i][1], dp[j-1][i][2]) + Map[j][i];
            for(int j = n; j >= 1; j--){
                dp[j][i][0] = Max(dp[j+1][i][0], dp[j+1][i][2]) + Map[j][i];
            }

        }
        int ans = Maxx(dp[1][m][0], dp[1][m][1], dp[1][m][2]);
        printf("Case #%d:\n%d\n", k, ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值