FOLD-R++:一个高效的归纳逻辑编程工具集
1. 引言
机器学习的成功推动了人工智能(AI)应用的迅猛发展。然而,这些系统的有效性受到其无法向人类用户解释其决策和行为的限制。统计机器学习方法产生的模型通常是复杂的代数解,难以直观理解。因此,用户难以验证和信任这些模型的预测。为了解决这一问题,可解释的人工智能(XAI)成为研究热点,旨在创建既能保持高预测准确度又能生成易于理解模型的技术。归纳逻辑编程(ILP)是其中之一,它生成的逻辑编程规则对人类用户来说是可理解的。
2. FOLD-R++概述
FOLD-R++是一种改进的归纳逻辑编程算法,旨在显著提高原有FOLD-R算法的效率和可扩展性。它在处理大规模数据集时不会丢失信息,并且在性能上与流行的机器学习算法如XGBoost具有竞争力,但在训练效率上更优。此外,FOLD-R++生成的是一个可解释的模型,这与XGBoost等黑箱模型形成鲜明对比。
2.1 FOLD-R++的特点
- 高效性 :FOLD-R++在编码或特征选择阶段没有妥协或丢失输入训练数据的信息,从而显著提高了效率。
- 可解释性 :与XGBoost不同,FOLD-R++生成的是一个可解释的模型,可以高效地计算预测结果,并使用s(CASP)系统自动生成解释。
- 竞争力 :FOLD-R++在性能上与广泛使用的XGBoost算法具有竞争力,尤其在训练效率方面表现出色。
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



