inline functin vs #define

本文探讨了在C++中使用内联函数替代宏定义的原因。内联函数避免了宏定义常见的错误,如参数求值次数不确定的问题,并且能够进行类型检查及正确的转换。与宏相比,内联函数在语义上更接近普通函数调用,同时提供了更快的执行速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Why should I use inline functions instead of plain old #define macros?

Unlike #define macros, inline functions avoid infamous macro errors since inline functions always evaluate every argument exactly once. In other words, invoking an inline function is semantically just like invoking a regular function, only faster:

    // A macro that returns the absolute value of i
    #define unsafe(i)  \
            ( (i) >= 0 ? (i) : -(i) )
    // An inline function that returns the absolute value of i
    inline
    int safe(int i)
    {
      return i >= 0 ? i : -i;
    }
    int f();
    void userCode(int x)
    {
      int ans;
      ans = unsafe(x++);   // Error! x is incremented twice
      ans = unsafe(f());   // Danger! f() is called twice
      ans = safe(x++);     // Correct! x is incremented once
      ans = safe(f());     // Correct! f() is called once
    }

Also unlike macros, argument types are checked, and necessary conversions are performed correctly.

Macros are bad for your health; don’t use them unless you have to.

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值