BZOJ3259(莫比乌斯反演 + 树状数组 + 离散处理 + 极性函数)

一道涉及莫比乌斯反演、树状数组、离线处理和极性函数的数表求和问题。题目要求计算一张数表中所有不超过a的数值之和,其中数表的每个元素由i和j的公约数决定。解决方案包括线性筛法计算莫比乌斯函数和约数和,离线处理数据,以及使用树状数组进行高效维护和求和,最终结果模2^31。
摘要由CSDN通过智能技术生成

3529: [Sdoi2014]数表

Time Limit: 10 Sec   Memory Limit: 512 MB
Submit: 2049   Solved: 1027
[ Submit][ Status][ Discuss]

Description

    有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

    输入包含

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值