哈工大数据结构实验一 线性表及其应用

实验一 线性表及其应用

实验内容:算术表达式求值

表达式求值是实现程序设计语言的基本问题之一,也是栈的应用的一个典型例子。设计一个程序,演示用算符优先法对算术表达式求值的过程。

实验要求:

(1)从键盘输入任意一个语法正确的(中缀)表达式,显示并保存该表达式。

(2)利用栈结构,把上述(中缀)表达式转换成后缀表达式,并显示栈的状态变化过程和所得到的后缀表达式。

(3)利用栈结构,对上述后缀表达式进行求值,并显示栈的状态变化过程和最终结果。

实验备注:

一、上传内容: 1. 实验报告 2. 实验程序源代码;打包为rar文件,提交到此处。

二、实验报告格式:见课件下载或下方附件“实验报告样式.doc


/*-100+((-2.5+3.1*2)/5.1-3.2)/2.8*/

look!本程序只支持:多位数,小数,负数,括号

1 中缀表达式 后缀表达式的 算法

设立一个栈,存放运算符,首先栈为空,程序从左到右扫描中缀表达

a.若遇到操作数,存放到后缀表达式的数组中,并输出一个空格作为两个操作数的分隔符(这里注意多位数处理,多 位数处理数字与数字之间不要空格);

b.若遇到运算符,则必须与栈顶比较,运算符级别比栈顶级别高则进否则退出栈顶元素并存放在后缀表达式中,然后输 出一个空格作分隔符;

c.若遇到左括号,进栈;

d.若遇到右括号,则一直退栈输出,直到退到左括号止。当栈变成空时,输出的结果即为后缀表达式。

2)计算后缀表达式算法:

设置一个栈,开始时,栈为空,然后从左到右扫描后缀表达式

a.若遇操作数,字符型转化为double类型,进栈;

b.若遇运算符,则从栈中退出两个元素,先退出的放到运算符的右边,后退出的放到运算符左边,运算后的结果再进 栈,直到后缀表达式扫描完毕。

c.此时,栈中仅有一个元素,即为运算的结果


#include <iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define  maxlen 100
using namespace std;
struct STACK_CHAR
{
    int top_char;
    char element[maxlen];
} op_s;
struct STACK_NUM
{
    int top_num;
    double element[maxlen];
} num_s;
char mid[100],end[100];//存放中缀和后缀
void makenull_char(STACK_CHAR &S)
{
    S.top_char=maxlen;
}
void makenull_num(STACK_NUM &S)
{
    S.top_num=maxlen;
}
bool empty_char(STACK_CHAR S)
{
    if (S.top_char>maxlen-1)   return true;
    else return false ;
}
bool empty_num(STACK_NUM S)
{
    if (S.top_num>maxlen-1)   return true;
    else return false ;
}
char top_char(STACK_CHAR S)
{
    if (empty_char(S)) return NULL;
    else return(S.element[S.top_char]);
}
double top_num(STACK_NUM S)
{
    if (empty_num(S)) return NULL;
    else return(S.element[S.top_num]);
}
void pop_char(STACK_CHAR &S)
{
    if (empty_char(S))  cout << "STACK_CHAR is empty" << endl;
    else
    {
        S.top_char =S.top_char+1;
        cout << "符号栈中元素:" ;
        for(int i=maxlen-1; i>=S.top_char; i--)  cout << S.element[i] << " ";
        cout << endl;
    }
}
void pop_num(STACK_NUM &S)
{
    if (empty_num(S))  cout << "STACK_NUM is empty" << endl;
    else
    {
        S.top_num =S.top_num+1;
        cout << "数字栈中元素:";
        for(int i=maxlen-1; i>=S.top_num; i--)   cout << S.element[i] << " ";
        cout << endl;
    }
}
void push(char x,STACK_CHAR &S)
{
    if (S.top_char==0)   cout << " STACK_CHAR  is full " << endl;
    else
    {
        S.top_char=S.top_char-1;
        S.element[S.top_char]=x;
        cout << "符号栈中元素:" ;
        for(int i=maxlen-1; i>=S.top_char; i--)  cout << S.element[i] <<  " ";
        cout << endl;
    }
}
void push_num(double x,STACK_NUM &S)
{
    if (S.top_num==0)   cout << " STACK_NUM is full " << endl;
    else
    {
        S.top_num=S.top_num-1;
        S.element[S.top_num]=x;
        cout << "数字栈中元素:";
        for(int i=maxlen-1; i>=S.top_num; i--)    cout << S.element[i] << " ";
        cout << endl;
    }
}
/*栈的一系列基本操作函数*/
int pre_judge(char x);//优先级判断
void mid_to_end(char a[],int n);//转化的函数
double calculate_end(char end[],int n);//计算后缀表达式函数
int main()
{
    int j;
    makenull_char(op_s);
    cout << "请输入前缀表达式:";
    gets(mid);
    cout << "前缀表达式为:";
    puts(mid);
    mid_to_end(mid,100);
    cout << endl << "后缀表达式为:" ;
    for (j=0; end[j]!='\0'; j++)
    {
        if(end[j]=='#') cout << '-';//扫描遇到井号那么显示负号
        else  cout << end[j];    //显示后缀表达式
    }
    cout << endl << endl;
    cout <<"表达式的计算结果为:"<< calculate_end(end,100) << endl;
    return 0;
}
int pre_judge(char x)//符号优先级判断
{
    int flag=0;
    switch(x)
    {
    case '(':
        flag=1;
        break;
    case ')':
        flag=1;
        break;
    case '+':
        flag=2;
        break;
    case '-':
        flag=2;
        break;
    case '*':
        flag=3;
        break;
    case '/':
        flag=3;
        break;
    default :
        break;
    }
    return flag;
}
void mid_to_end(char a[],int n)//中缀转后缀函数
{
    int end_count=0,i,m=0;
    if(a[0]=='-')//中缀表达式中是第一个为负号
    {
        end[end_count]='#';//用#号标记负号
        end_count++;
        m=1;//如果为负号,进入循环扫描的时候就从第二个字符开始
    }
    for (i=m; a[i]!='\0'; i++)
    {
        if (a[i]<='9'&&a[i]>='0'&&(a[i+1]>'9'||a[i+1]<'0')&&a[i+1]!='.')
        {
            end[end_count]=a[i];
            end_count++;
            end[end_count]=' ';
            end_count++;
        }//当前字符为0~9而且下一个为运算符(即为数字的最后一位,那么设空格与下一个数字分开)
        else if((a[i]<='9'&&a[i]>='0'&&((a[i+1]<='9'&&a[i+1]>='0')||a[i+1]=='.'))||a[i]=='.')
        {
            end[end_count]=a[i];
            end_count++;
        }//是数字而且不是数字的最后一位,后最中不设空格
        else if(a[i-1]=='('&&a[i]=='-')
        {
            end[end_count]='#';
            end_count++;
        }//中缀表达式扫描到的数字的前一个是左括号则当负号处理
        else if((a[i]=='+'||a[i]=='-'||a[i]=='*'||a[i]=='/')&&a[i-1]!='(')
        {
            while(!empty_char(op_s))
            {
                if(pre_judge(top_char(op_s))>=pre_judge(a[i]))
                {
                    end[end_count]=top_char(op_s);
                    pop_char(op_s);
                    end_count++;
                    end[end_count]=' ';
                    end_count ++;
                }
                else break;
            }
            push(a[i],op_s);
        }/*若遇到运算符,则必须与栈顶比较,运算符级别比栈顶级别高则进栈,
        否则退出栈顶元素并存放在后缀表达式中,然后输出一个空格作分隔符;*/
        else if (a[i]=='(') push(a[i],op_s);//若遇到左括号,进栈;
        else  if(a[i]==')')
        {
            while(1)
            {
                if(top_char(op_s)=='(')
                {
                    pop_char(op_s);
                    break;
                }
                else
                {
                    end[end_count]=top_char(op_s);
                    pop_char(op_s);
                    end_count++;
                    end[end_count]=' ';//注意设置空格
                    end_count++;
                }
            }
        }//若遇到右括号,则一直退栈输出,直到退到左括号止。
        else  continue;
    }
    while(!empty_char(op_s))//将栈中剩下的元素弹出
    {
        end[end_count]=top_char(op_s);
        pop_char(op_s);
        end_count++;
        end[end_count]=' ';
        end_count++;
    }
    end[end_count]='\0';//设置字符串结束标识
}
double calculate_end(char a[],int n)        //计算后缀表达式的值
{
    double top,sec,ans=0,number;
    int i=0,j=0,k,x;
    bool flag=true;//flag用于标记是否为负数,开始时设定为不是负数
    char num[100];
    STACK_NUM num_s;
    makenull_num(num_s);
    for(i=0; end[i]!='\0'; i++)
    {
        if(end[i]=='#')
        {
            flag=false;
            j=i+1;
        }
        if(end[i]==' '&&end[i-1]>='0'&&end[i-1]<='9')
        {
            for(k=j,x=0; k<=i; k++,x++) num[x]=end[k];
            //在截取完整的数存放到num中,但是这时的数还是char的,下面用atof函数进行转化
            number=atof(num);//将char型的数转化为double
            if(flag==false)
            {
                number=(-1)*number;
                flag=true;//处理完为负数之后那么把标识又设为不是负数,下一次循环使用
            }
            push_num(number,num_s);
            memset(num,' ',sizeof(num));
            number=0;
        }//遇到的是操作数,进栈;
        else if(end[i-1]==' '&&end[i]<='9'&&end[i]>='0')  j=i;
        //扫描到数字的第一个啦那么把j设置成i一遍循环时候num中截取字符串
        else if(a[i]=='+'||a[i]=='-'||a[i]=='*'||a[i]=='/')
        {
            top=top_num(num_s);
            pop_num(num_s);
            sec=top_num(num_s);
            switch (a[i])  /*对不同运算符进行分别处理*/
            {
            case'+':
                ans=sec+top;
                break;
            case'-':
                ans=sec-top;
                break;
            case'*':
                ans=sec*top;
                break;
            case'/':
                ans=sec/top;
                break;
            }
            pop_num(num_s);
            push_num(ans,num_s);
        }
           /*若遇运算符,则从栈中退出两个元素,
            先退出的放到运算符的右边,后退出的放到运算符左边,
            运算后的结果再进栈*/
        else continue;
    }
    return  top_num(num_s);//栈中只有一个元素啦,返回为结果
}

报告见百度文库。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值