矩阵游戏 题解

描述

婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:
F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)
F[i,1]=c*F[i-1][m]+d (i!=1)
递推式中a,b,c,d都是给定的常数。
现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。

输入

一行有六个整数n,m,a,b,c,d。意义如题所述。

1<=N,M<=10^1000 000,a<=a,b,c,d<=10^9

输出

包含一个整数,表示F[n][m]除以1,000,000,007的余数

样例输入

3 4 1 3 2 6

样例输出

85

提示

样例中的矩阵为:

1 4 7 10
26 29 32 35
76 79 82 85 


题解

一步步推导公式,首先从行开始,以第一行为例:
        f[1][j] = a * f[1][j - 1] + b

        f[1][j] = a * (a * f[1][j - 2] + b) + b

        …

将每一项化开,可以推出前面f的系数是a的j - 1次幂,后面是从b开始到b * a ^ (m - 1)的等比数列求和,最后可以得到每行第m个数的公式:

        f[i][m] = a ^ (m - 1) * f[i][1] + b * (1 - a ^ (m - 1) / (1 - a)

注意这里如果a为1,那么后半部分就不能按等比数列计算了,而是直接m - 1个b的和 :
        f[i][m] = f[i][1] + b * (m - 1)

然后再推第一列的数:

        f[i][1] = c * f[i - 1] [m] + d

把求每行第m个的公式带入这个式子可得

        f[i][1] = c * ( a ^ (m - 1) * f[i - 1][1] + b * (1 - a ^ (m - 1) / (1 - a) ) + d 

这里令 a' = c * (a ^ (m - 1)),b' = c * b * (1 - a ^ (m - 1) / (1 - a) + d,这里的a'也和上一步的a一样如果是1的话要另外考虑,这样就可以得到和一开始推出来的行的公式类似的式子:

        f[n][1] = a' ^ (n - 1) * f[1][1] + b' * (1 - a' ^ (n - 1) / (1 - a')

最后求出f[n + 1][1]解方程求出f[n][m]即可。

本题的问题是,n,m有10^1000000,分别用作乘数和次方,做为乘数的时候可以边计算边取余很方便,作为次方的时候据说可以使用欧拉降幂来减少次数,公式如下,推导建议自己搜搜这里借个公式。

        a^{b}=a^{b \% \varphi (n)}mod n

这里\varphi \left ( n \right )表示欧拉函数:

n为质数时, \varphi \left ( n \right ) = n - 1,显然题目中1e9 + 7是质数,所以可以直接带入1e9 + 6进行计算

代码

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 10000010, MOD = 1e9 + 7;
char n[N], m[N];
LL xn, mn, xm, mm;
LL a, b, c, d;
LL ksm(LL a, LL b) {
	LL ans = 1;
	while(b > 0) {
		if(b & 1) ans = (a * ans) % MOD;
		a = (a * a) % MOD;
		b >>= 1;
	}
	return ans % MOD;
}

int main() { 
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	cin >> n >> m >> a >> b >> c >> d;
	//计算用于乘法的n, m和用欧拉降幂求幂的n, m
	for(int i = 0;n[i];i ++) {
		xn = (xn * 10 + n[i] - '0') % MOD;
		mn = (mn * 10 + n[i] - '0') % (MOD - 1);
	}
	for(int i = 0;m[i];i ++) {
		xm = (xm * 10 + m[i] - '0') % MOD;
		mm = (mm * 10 + m[i] - '0') % (MOD - 1);
	}

	LL t = ksm(a, mm - 1), na = ksm(a - 1, MOD - 2) ;
	LL x = t * c % MOD, y;
	if(a == 1) {
		y = ((c * b % MOD) * (((xm - 1 + MOD) % MOD) % MOD) % MOD + d) % MOD;
	}else {	
		y = (((c * b % MOD) * ((t - 1 + MOD) * na % MOD)) + d) % MOD;
	}
	// cout << x << ' ' << y << '\n';

	LL xx = ksm(x, mn), nx = ksm(x - 1, MOD - 2);
	LL tt;
	if(x == 1) {
		tt = (1 + y * xn) % MOD;
		// cout << tt << '\n';
	}else tt = ((xx + ((y * (xx - 1 + MOD)) % MOD) * nx) % MOD) % MOD;

	LL ans = (((tt - d) * ksm(c, MOD - 2) % MOD) + MOD) % MOD;
	cout << ans;

	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值