透明度是指让人工智能的工作原理,数据来源,决策依据和潜在影响更加清晰和可理解,以增强人们对人工智能的信任和理解。透明度是确保AI系统公正、可靠和负责任的重要实践之一。对于一个AI系统的透明度,应该从如下几个角度进行衡量:
- AI系统的目标和范围:在设计一个AI系统之初,就应该明确系统是用来干什么的,解决什么领域的什么问题,明确系统的干系人,在什么国家或者地域投产。这样我们就可以提前圈定需要遵从的法律、伦理道德规范,要避免什么样的风险外溢。
- AI系统的数据来源和处理逻辑:在训练AI系统的模型时,数据应该采用合理、合规、合法的数据,在保证数据的质量的前提下保证多样性,从而避免数据集中存在的偏见风险和歧视风险。同时数据集中的隐私问题、安全问题也是重点处理的内容。要明确清楚AI系统使用的数据的来源、处理方式以及数据对模型反馈的影响。
- AI系统的决策依据和潜在影响:应该熟知选择模型的是否适合当前问题的解决方案,保证AI系统的准确性和可靠性,避免算法引起的错误或则缺陷。应该考虑AI系统提供决策的依据和逻辑,并且了解决策过程的不确定性以及决策的可信度,并评价AI系统对于自然人的影响,这里面既包含正面的积极影响,也要包含负面的消极影响,从而可以全面评估。
在实现过程中提供可解释性模型,通过可以解释自己的决策过程和推理过程的模型提供AI系统的透明度,然使用者更