伦理道德的六个方面中每一个方面的验证都需要收集很多问题,想要通过一次性的收集整理还是很难覆盖全部的伦理道德的验证内容。所以我们应该通过有效的手段从模型建立之初就开始着手收集关于AI系统的各种信息,为伦理道德的验证提供更全面的输入和参考。Google Brain团队在2018年在《Model Cards for Model Reporting》文章中提出的Model Card,就是很好的完成上述任务的工具之一。自从Mode Card被提出来以后,微软、IBM、OpenAI、Meta等公司都在其AI系统中鼓励使用Model Cards帮助AI系统的干系人了解AI系统的相关信息,从而更好的管理模型性能风险和伦理道德风险。
Model Card就像机器学习模型的档案一样,记录了这个模型是为什么建立的,考虑了为什么人做什么样的服务,有什么样的性能表现等等内容信息,一些比较常出现在模型卡上的内容如下有模型详情、使用预期、影响因素、指标、评价数据、训练数据、伦理道德影响因素以及其他建议和注意事项。
- 模型详情:在Model Card的模型详情内容是由模型的名称、版本、类型、创建日期、训练的团队、详细介绍的引用、使用的介绍、license以及反馈方法进行详细记录。
- 使用预期:详细介绍模型是服务于什么角色做什么用处的,主要目的就是为了能让模型的使用者快速知道该模型的作用和服务对象,同时也应该在使用预期中给出一些实用约束。
- 约束和限制:在这部分主要说明可能对模型造成印象的内容,包含了数据特征分组、外部依赖设备、