- 博客(16)
- 收藏
- 关注
原创 理解PyTorch中的dimensions维度,三维张量求和过程
通过可视化一个三维张量上的求和过程,更好地直观地了解PyTorch的维数理解张量(tensor):在TensorFlow和pyTorch中,大量数据不放在数组之类的容器中,而放在一个大张量中。例如,如果有20000张28✕28,24位真彩色的照片,就会放到一个[20000,28,28,3]形状的张量中。当开始用PyTorch张量做一些基本的运算时,比如求和,它看起来很简单,对于一维张量来说很简单:>> x = torch.tensor([1, 2, 3])>> torch
2021-10-03 10:50:00 4639 4
原创 数据数组去除第一行和第一列data = np.array(data[1:])[:, 1:]
数组去除第一行和第一列代码:import numpy as npdata = np.array(data[1:])[:, 1:].astype(float)示例:import numpy as npdata = np.random.randint(0,10,(5,5))print(data)print('*******************************')data1 = np.array(data[1:])[:, 1:].astype(float)print(data1)
2021-09-22 22:49:00 3134
原创 英伟达显卡账号忘记密码修改密码怎么解决
应为带欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加
2021-09-20 22:57:53 9553
原创 电子信息专硕学硕建议考研经验
关于考研我首先想说的是,这个考试和高考已经无关,放下高考的包袱。和高考最大的区别是,付出肯定肯定肯定会有回报。一.考研书籍参考《通信原理》樊昌信《信号与线性系统》吴大正二.专硕和学硕的选择笔者是考的085400的电子信息专硕。学硕和专硕的差别在于数学和英语,数一和数二的差距还是蛮大的,主要在难度和范围。数一难度确实大过数二,考试范围和难度较大的章节都在数一上。英语一和英语二的难度差别也有,对于我这种英语基础不太好的人做起来尤其明显。所以对于:数学基础不好的;英语基础不好的;准备的仓促的,建议直接
2021-07-12 18:31:48 8036 1
原创 Python运用决策树方法和随机预测一个人的收入水平
一.数据集来源http://archive.ics.uci.edu/ml/datasets/Adult该数据集是美国1994年人口普查数据库,预测任务是确定一个人的年收入是否超过5万美元。该数据集有以下指标,并且有缺失项。二.方法决策树方法和随机森林方法三.步骤要对数据进行处理,删除缺失数据,然后对特征进行赋值,变换成哑变量。举一个例子:Edu值Prescho...
2020-02-08 15:18:35 3030
原创 Python多项逻辑回归和线性判别分析识别英文字母
应用多项逻辑回归(Multinomial Logistic Regression, MLR)和线性判别分析((Linear Discriminant Analysis, LDA)来识别英文字母。一.数据集数据集来源:http://archive.ics.uci.edu/ml/datasets/letter+recognition数据集data文件中共有17列20000行,其中第1列是英文字母...
2020-01-26 12:04:40 1667
原创 Python不同方法实现手写数字识别结果和代码
一.背景手写数字识别是符号识别的一个分支,虽然只是识别简单的10个数字,但却有着非常大的实用价值。在我们的日常生活中,每天都要进行大量的文档处理工作,比如税单,银行支票,汇款单,信用卡账单的处理,以及邮局信函的分检等等,如何利用计算机字符识别和文档处理技术,使人们从这些繁重的手工劳动中解放出来已成为个迫切需要解决的问题。另外随着平板电脑和触摸屏手机的普及,手写输入成为了很多人的主要输入方式。手写...
2020-01-26 11:19:50 3758 1
原创 指数族分布介绍/求指数族分布的求E(a(Y))和D(a(Y))
指数族分布(Exponential Family of Distributions)亦称指数型分布族,是统计中最重要的参数分布族,包含了二项分布、正态分布、泊松分布等。概率密度函数可以表达为如下形式:如果a(y)=y,则指数族分布为标准形式(Standard Form),b(θ)称为自然参数(Natural Parameter),如果存在θ之外的其它参数称为讨厌参数(Nuisance Pa...
2020-01-15 21:03:16 1678
原创 傅里叶级数和傅里叶变换简介和推导
一.傅里叶变换简介在数学上,对任意函数 f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。 泰勒展开为各阶次幂函数的线性组合形式, 本质上自变量未改变,仍为 x。但是傅里叶变换有:傅里叶展开为三角函数的线性组合。将自变量由x变成 ω。由时域分析变换到频域分析。由于这些特点,所以信号处理上经常使用傅里叶变换。信号分析与处理中常见的有:简称全称CFS(C...
2019-10-06 18:37:05 13379
原创 基于AI对胎儿头围的检测/测量
这是一个两周的小学期中老师布置的一个项目,运用了Python和tensorflow平台。建议大家先大概了解一下unet算法(GitHub上有很多例子),之后做起来会比较容易。一.项目背景如今,父母对待自己胎儿的发育检查非常重视,会通过各种检查方法检查胎儿是否畸胎,器官功能发育异常,遗传因素稳定等。而这其中通过超声图像中胎儿头围是评估胎儿发育的重要指标之一,胎儿头围在临床上一般由医生手动进行椭...
2019-10-05 13:05:43 1149 3
原创 非均衡数据或不均衡数据的处理方法
什么是非均衡数据?举个生活中的例子,我想大致调查一个年级(男生女生人数1:1)的平均体重,之后我随机抽了一个班进行测量,这个班50位同学,40位男生,10位女生,结果可想而知不准确。那这个数据就是非均衡数据了。非均衡数据就是我们的数据集不同类别的样本数之间相差很多。当我们进行机器学习任务时,如果样本有大量的非均衡数据,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样...
2019-09-25 11:43:02 4835
原创 Python蒙特·卡罗方法和Q-Q plot验证中心极限定理
一.蒙特卡罗方法蒙特卡洛的基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果,精髓就是:用统计结果去计算频率,从而得到真实值的近似值。蒙特卡洛方法可以应用在很多场合,但求的是近似解,在模拟样本数越大的情况下,越接近与真实值,但样本数增加会带来计算量的大幅上升。不理解的话请戳:https://blog.csdn.net/crj0926/a...
2019-09-21 19:23:49 2959
原创 蒙特卡罗方法
蒙特卡罗方法:官方理解蒙特卡洛的基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果,精髓就是:用统计结果去计算频率,从而得到真实值的近似值。蒙特卡洛方法可以应用在很多场合,但求的是近似解,在模拟样本数越大的情况下,越接近与真实值,但样本数增加会带来计算量的大幅上升。通俗理解:比如我想测量投掷硬币正面朝上的概率(不考虑硬币竖起来...
2019-09-20 10:36:24 1546
原创 Python——matplotlib模块构造箱型图检测异常值
一.箱型图通俗来讲,就是将所有的数据都分布在这张图上,矩形上下限用四分为值,又用四分位值算出一个上界和下界,大于上界或者小于下界的值就是异常值。这里四分位距(IQR)就是上四分位与下四分位的差值。我们通过四分位距的1.5倍为标准,上界:超过上四分位+1.5倍IQR距离,下界:下四分位-1.5倍IQR距离的点为异常值。分位值的定义和计算在这里:(https://blog.csdn.net/cr...
2019-09-18 11:21:54 5196 1
原创 Python——describe函数值输出含义/分位值的计算和含义
describe函数输出含义NA数据已经删除in:print(adult["Hours-per-week"].describe())#输出每周工作的小时总量output:count:总数mean:平均值std:方差min:最小值25%:25%分位数50%:50%分位数75%:75%分位数max:最大值Name:名字dtype:数据类型分位值:25%分位值对应4...
2019-09-15 15:04:18 8307 1
原创 python判断行或列是否有缺失值/统计缺失值数量
1.检查是否有缺失值列:data.isnull().any()print(data.isnull().any())false无缺失值/true有缺失值结果例样:age falsename falseschool trueschool的这一列有缺失值,其他列无缺失值。行:data.isnull().any(axis=1)print(data.isnull().any(axi...
2019-09-13 19:39:18 38848
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人