题目来源:http://oj.leetcode.com/problems/divide-two-integers/
参考博客:https://blog.csdn.net/dzq_boyka/article/details/79026755
问题分析: 该题目限制了运算范围,不能使用乘、除,取模运算。那么剩下的就只剩下加、减运算。
1)一种方法是,在先判定正负号(减枝处理,减少循环范围),因为是32位的数,可以逐次累加,逐步逼近被除数,然后取商值,这种对于被除数绝对值很大时,运行时间长,不适合;
2)然而、仔细想想,在数字电路中,我们设计的加法器、减法器的原型采用了移位运算这一关键步骤。CPU的运算中,基本的运算是加、减运算、乘除运算由加减运算复合而来,这也是乘除运算相对而言,处理速度较慢的原因。原理如下:
对于乘法
首先要分解乘数,以二进制的形式表现(5 = 4+1),所以乘以5就相当与将被乘数左移动2位,在加上自己本省
例如:3*5=00000011*00000101
=00000011*00000001+00000011*00000100
=00000011(左移0位)+00000011(左移2位)
=00000011+00001100
=00001111
=15
对于除法:
参考数字电路中除法器的设置原理:
https://blog.csdn.net/u014207762/article/details/51586321
例如: 对于32的无符号除法,被除数a除以除数b,他们的商和余数一定不会超过32位。首先将a转换成高32位为0,低32位为a的temp_a。把b转换成高32位为b,低32位为0的temp_b。在每个周期开始时,先将temp_a左移一位,末尾补0,然后与b比较,是否大于b,是则temp_a减去temp_b将且加上1,否则继续往下执行。上面的移位、比较和减法(视具体情况而定)要执行32次,执行结束后temp_a的高32位即为余数,低32位即为商。
这个就是我们的思路,代码如下:
class Solution {
public:
int divide(int dividend, int divisor) {
//special cases
if(divisor == 0 || (dividend == INT_MIN && divisor == -1))
return INT_MAX;
// transform to unsigned int
bool sign = (dividend > 0)^(divisor > 0);
unsigned int A = (divisor < 0) ? -divisor : divisor;
unsigned int B = (dividend < 0) ? -dividend : dividend;
int ret = 0;
// shift 32 times
for(int i = 31; i >= 0; i--)
{
if((B>>i) >= A)
{
ret = (ret<<1)|0x01;
B -= (A<<i); // update B
}
else
ret = ret<<1;
}
if(sign)
ret = -ret;
return ret;
}
};