LeetCode Divide Two Integers

题目来源:http://oj.leetcode.com/problems/divide-two-integers/

参考博客:https://blog.csdn.net/dzq_boyka/article/details/79026755

问题分析: 该题目限制了运算范围,不能使用乘、除,取模运算。那么剩下的就只剩下加、减运算。

1)一种方法是,在先判定正负号(减枝处理,减少循环范围),因为是32位的数,可以逐次累加,逐步逼近被除数,然后取商值,这种对于被除数绝对值很大时,运行时间长,不适合;

 2)然而、仔细想想,在数字电路中,我们设计的加法器、减法器的原型采用了移位运算这一关键步骤。CPU的运算中,基本的运算是加、减运算、乘除运算由加减运算复合而来,这也是乘除运算相对而言,处理速度较慢的原因。原理如下:

对于乘法

首先要分解乘数,以二进制的形式表现(5 = 4+1),所以乘以5就相当与将被乘数左移动2位,在加上自己本省

例如:3*5=00000011*00000101

=00000011*00000001+00000011*00000100 

=00000011(左移0位)+00000011(左移2位)

=00000011+00001100 

=00001111 

=15 

 

对于除法:

参考数字电路中除法器的设置原理:

https://blog.csdn.net/u014207762/article/details/51586321

例如: 对于32的无符号除法,被除数a除以除数b,他们的商和余数一定不会超过32位。首先将a转换成高32位为0,低32位为a的temp_a。把b转换成高32位为b,低32位为0的temp_b。在每个周期开始时,先将temp_a左移一位,末尾补0,然后与b比较,是否大于b,是则temp_a减去temp_b将且加上1,否则继续往下执行。上面的移位、比较和减法(视具体情况而定)要执行32次,执行结束后temp_a的高32位即为余数,低32位即为商。

这个就是我们的思路,代码如下:

class Solution {
public:
   int divide(int dividend, int divisor) {
    //special cases
    if(divisor == 0 || (dividend == INT_MIN && divisor == -1))
        return INT_MAX;
    
    // transform to unsigned int
    bool sign = (dividend > 0)^(divisor > 0);
    unsigned int A = (divisor < 0) ? -divisor : divisor;
    unsigned int B = (dividend < 0) ? -dividend : dividend;
    int ret = 0;
    
    // shift 32 times
    for(int i = 31; i >= 0; i--)
    {
        if((B>>i) >= A)
        {
            ret = (ret<<1)|0x01;
            B -= (A<<i);   // update B
        }
        else
            ret = ret<<1;
    }
    
    if(sign)
        ret = -ret;
    
    return ret;

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值