练习---爬取时光网电视剧TOP100的电影名,用同步和异步两种方式,并对比完成速度

本文对比了同步与异步爬虫技术在抓取mtime电影榜单数据时的效率。通过使用Python的requests库和gevent库,实现了对mtime网站电影榜单页面的爬取,并比较了非多协程与多协程环境下爬虫的执行时间。结果显示,采用5个异步爬虫任务能够显著提升数据抓取的速度。
from gevent import monkey
monkey.patch_all()

import requests,time,gevent
from bs4 import BeautifulSoup
from gevent.queue import Queue

res = requests.get('http://www.mtime.com/top/tv/top100/')
html = res.text
bs = BeautifulSoup(html,'html.parser')
page = bs.find(id='PageNavigator').find_all('a')
url_list = []
url_list.append('http://www.mtime.com/top/tv/top100/')
for p in page:
    try:
        url_list.append(p['href'])
    except KeyError:
        pass
#print(url_list)



#非多协程的时间
start = time.time()
def crawler(url):
    res = requests.get(url)
    #print(res.status_code)
    html = res.text
    bs = BeautifulSoup(html, 'html.parser')
    movies = bs.find(class_="colm").find(class_='top_list').find('ul').find_all('li')
    for movie in movies:
        name = movie.find(class_='px14 pb6').find('a').text
        print(name)
for url in url_list:
    crawler(url)
end = time.time()
interval = end - start


#多协程的时间
start2 = time.time()
work = Queue()
for url in url_list:
    work.put_nowait(url)
    #把url放进队列
def crawler(url):
    while not work.empty():
        url = work.get_nowait()
        res = requests.get(url)
        #print(res.status_code)
        html = res.text
        bs = BeautifulSoup(html, 'html.parser')
        movies = bs.find(class_="colm").find(class_='top_list').find('ul').find_all('li')
        for movie in movies:
            name = movie.find(class_='px14 pb6').find('a').text
            print(name)
task_list = []
for x in range(5):
#同时建立了5个爬虫,越多越快
    task = gevent.spawn(crawler,url)
    task_list.append(task)
gevent.joinall(task_list)
end2 = time.time()
interval2 = end2 - start2
print("\n"+'同步爬虫时间为:'+str(interval))
print('5个异步爬虫时间为'+str(interval2))

 

以下是使用 Python 的 `threading` 模块爬取豆瓣电影 Top250 前五页的电影导演的代码: ```python import requests from bs4 import BeautifulSoup import threading # 定义一个函数用于爬取单页数据 def fetch_page_data(page_url, result_list): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } response = requests.get(page_url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') movie_items = soup.select('div.item') for item in movie_items: title = item.select_one('span.title').get_text(strip=True) # 获取电影 director_info = item.select_one('div.bd p').get_text(strip=True).split('\n')[0] # 获取导演信息 director = director_info.split('导演: ')[1].split()[0] # 提取导演 result_list.append((title, director)) # 主函数,用于多线程爬取 def main(): base_url = "https://movie.douban.com/top250?start={}&filter=" result_list = [] # 存储结果的列表 threads = [] for i in range(5): # 爬取前五页 page_url = base_url.format(i * 25) thread = threading.Thread(target=fetch_page_data, args=(page_url, result_list)) threads.append(thread) thread.start() # 等待所有线程完成 for thread in threads: thread.join() # 打印结果 for idx, (title, director) in enumerate(result_list, 1): print(f"{idx}. 电影: {title}, 导演: {director}") if __name__ == "__main__": main() ``` ### 上述代码解释: 1. **函数定义**: - `fetch_page_data(page_url, result_list)`:负责爬取单页的数据,将结果存储到 `result_list` 中。 - 使用 `requests` 发送 HTTP 请求获取网页内容。 - 使用 `BeautifulSoup` 解析 HTML,提取电影导演信息。 - 通过 `select_one` 方法定位目标元素。 2. **多线程实现**: - 在主函数 `main()` 中,创建了 5 个线程(每页一个线程)来爬取数据。 - 每个线程执行 `fetch_page_data` 函数,处理对应的页面 URL。 - 使用 `thread.join()` 确保主线程等待所有子线程完成。 3. **结果存储与输出**: -爬取到的电影导演信息存入 `result_list` 列表中。 - 最后遍历 `result_list` 打印结果。 --- ### 注意事项: 1. **反爬机制**: - 豆瓣网站有反爬机制,频繁访问可能会导致 IP 被封禁。可以通过设置请求头 (`headers`) 增加延时 (`time.sleep()`) 来降低被封禁的风险。 2. **合法性**: - 爬虫行为应遵守目标网站的 `robots.txt` 文件规定,避免对服务器造成过大压力或违反法律。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值