ForkJoinPool分支合并框架 核心思想->代码演示

线程池架构Fork-Join 框架

就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。

Fork-Join 框架

工作窃取 模式(work-stealing)

当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,当该线程队列没有需要执行的任务时,再从一个随机线程的队列中偷一个并把它放在自己的队列中。

相对于一般的线程池实现,fork-join框架的优势体现在对其中包含的任务的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态。而在fork-join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行。那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能。

工作窃取模式

代码演示

package com.xiaoqiang;

import java.time.Duration;
import java.time.Instant;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
/**
 * 本案例适用于大量操作
 * 若少量数据可直接操作
 * 程序执行速度受临界值较大
 * 请选择合理的临界值
 * @author xiaoqiang
 * @time 2017-7-5
 */

public class ForkJoin extends RecursiveTask<Long> {
    private static final long serialVersionUID = 7633953255462137626L;
    private long start;// 开始值
    private long end;// 结束值
    private static final long THURSHOLD = Math.abs(new Random().nextInt());// 临界值

    public ForkJoin(long start, long end) {
        this.start = start;
        this.end = end;
    }

    /**
     * 结束值与开始至之差小于临界值时 程序继续把大任务划分为小任务
     */

    @Override
    protected Long compute() {
        long temp = end - start;
        if (temp <= THURSHOLD) {
            long sum = 0L;
            for (long i = start; i <= end; i++) {
                sum += i;
            }
            return sum;
        } else {
            long middle = (start + end) / 2;
            // 递归调用
            ForkJoin left = new ForkJoin(start, middle);
            ForkJoin right = new ForkJoin(++middle, end);
            left.fork(); // 进行拆分 继续执行判断
            right.fork();
            return left.join() + right.join();// 合并结果集
        }
    }
    public static void main(String[] args) {
        Instant time1 = Instant.now();//JAVA8新类  可以使用System.currentTimeMillis() 替代
        ForkJoinPool pool = new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoin(0L, 50000000000L);
        long sum = pool.invoke(task);
        Instant time2 = Instant.now();
        System.out.println("分割后耗费时间:" + Duration.between(time1, time2).toMillis() + "毫秒");
        sum = 0L;
        Instant time3 = Instant.now();
        for (long i = 0L; i <= 50000000000L; i++) {
            sum += i;
        }
        Instant time4 = Instant.now();
        System.out.println("未分割耗费时间:" + Duration.between(time3, time4).toMillis() + "毫秒");
//      分割后耗费时间:8284毫秒
//      未分割耗费时间:15552毫秒
//      若数据较少 则分割会额外耗费时间

    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值