线程池架构Fork-Join 框架
就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。
工作窃取 模式(work-stealing)
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,当该线程队列没有需要执行的任务时,再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork-join框架的优势体现在对其中包含的任务的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态。而在fork-join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行。那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能。
代码演示
package com.xiaoqiang;
import java.time.Duration;
import java.time.Instant;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
/**
* 本案例适用于大量操作
* 若少量数据可直接操作
* 程序执行速度受临界值较大
* 请选择合理的临界值
* @author xiaoqiang
* @time 2017-7-5
*/
public class ForkJoin extends RecursiveTask<Long> {
private static final long serialVersionUID = 7633953255462137626L;
private long start;// 开始值
private long end;// 结束值
private static final long THURSHOLD = Math.abs(new Random().nextInt());// 临界值
public ForkJoin(long start, long end) {
this.start = start;
this.end = end;
}
/**
* 结束值与开始至之差小于临界值时 程序继续把大任务划分为小任务
*/
@Override
protected Long compute() {
long temp = end - start;
if (temp <= THURSHOLD) {
long sum = 0L;
for (long i = start; i <= end; i++) {
sum += i;
}
return sum;
} else {
long middle = (start + end) / 2;
// 递归调用
ForkJoin left = new ForkJoin(start, middle);
ForkJoin right = new ForkJoin(++middle, end);
left.fork(); // 进行拆分 继续执行判断
right.fork();
return left.join() + right.join();// 合并结果集
}
}
public static void main(String[] args) {
Instant time1 = Instant.now();//JAVA8新类 可以使用System.currentTimeMillis() 替代
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoin(0L, 50000000000L);
long sum = pool.invoke(task);
Instant time2 = Instant.now();
System.out.println("分割后耗费时间:" + Duration.between(time1, time2).toMillis() + "毫秒");
sum = 0L;
Instant time3 = Instant.now();
for (long i = 0L; i <= 50000000000L; i++) {
sum += i;
}
Instant time4 = Instant.now();
System.out.println("未分割耗费时间:" + Duration.between(time3, time4).toMillis() + "毫秒");
// 分割后耗费时间:8284毫秒
// 未分割耗费时间:15552毫秒
// 若数据较少 则分割会额外耗费时间
}
}