- 博客(40)
- 收藏
- 关注
原创 Sphinx 安装相关指令解释
安装指令pip3 install sphinx-autobuildpip3 install sphinx_rtd_themepip3 install sphinx_markdown_tablepip3 install sphinx_markdown_tablespip3 install sphinx-autobuild功能:安装 sphinx-autobuild 包。作用:sphinx-autobuild 是一个工具,它在检测到源文件更改时自动重新构建 Sphinx 文档并刷新浏览器。这对于实时预览
2024-07-22 21:55:23 361
原创 KAN(Kolmogorov-Arnold Network)的理解 3
这里记录我对于KAN的探索过程,每次会尝试理解解释一部分问题。欢迎大家和我一起讨论。
2024-06-03 22:30:06 2076 1
原创 Grammaly中的评判标准
一般Grammaly中会有engagement, correctness, delivery, and correctness这四个判断指标。调查了一下这四个指标的含义。
2024-06-03 15:42:23 419
原创 KAN(Kolmogorov-Arnold Network)的理解 2
这里记录我对于KAN的探索过程,每次会尝试理解解释一部分问题。欢迎大家和我一起讨论。
2024-05-28 08:49:58 377
原创 KAN(Kolmogorov-Arnold Network)的理解 1
这里记录我对于KAN的探索过程,每次会尝试理解解释一部分问题。欢迎大家和我一起讨论。
2024-05-28 08:42:00 625
原创 【论文查找】GPT给我的搜索建议
今天给自己设定了两个板块的论文阅读目标,做完计划之前问了一下GPT信息整和方案,发现GPT给我了一个非常好的方案,这里总结一下分享给大家。
2024-05-08 09:40:11 326
原创 【微磁学】对于现阶段微磁学仿真发展的思考1-理论篇
做了一些微磁学的研究,但是意识到自己还需要一些更深入的思考和更多的框架整理。这个模块为理论模块,说明做微磁学研究相关的数理基础是什么。喜欢物理的研友们如果还有更多的补充请私信我。知乎:微磁学模拟研究专栏本篇部分内容表述会通过GPT润色增加可读性。这里给出了一些所研究领域的自我思考,感觉就是常复盘常新,科研需要框架意识。
2024-05-07 16:33:25 1486
原创 【微磁学3D绘图工具探索】Paraview
通过透射电子显微镜和扫描透射电子显微镜(S/TEM),可以进行纳米和中等尺度材料的3D表征。为了分析和可视化这些3D数据集,需要使用先进的软件工具。Kitware开发的Tomviz是ParaView的一个版本,专门用于可视化电子断层图数据。它能够高效地利用大量的内存和处理资源进行渲染、操作和分析大规模的3D断层图。该工具可以生成带阴影的轮廓和体积投影,通过直方图、多相关统计、多重过滤和用户定制的Python脚本进行详细的数据分析。它还提供了多个数据集、色图和其他可视化设置的组合,以进行丰富的分析。
2024-05-07 10:13:00 500
原创 【微磁学3D绘图工具探索】Excalibur
该软件在研究这些系统的稳态配置中发挥着关键作用,通过最小化系统的总自由能来实现,适用于微磁体、超导体以及由磁体和超导体组成的混合装置。Excalibur软件是在磁性和超导领域进行数值模拟和分析的强大工具,特别适合于需要高度精确和实时交互分析的科研和工程应用。微磁学中的磁学结构同时包括二维和三维,想要绘制得好看,结果清晰,那么就需要一些自己写的绘图代码之外的额外渲染功能,尤其是对于三维结构的处理,一个好的渲染能够带来很好的效果。算法引擎:通过最小化诸如微磁体、超导体和混合设备的总自由能来找到系统的稳定配置。
2024-05-06 23:11:04 459
原创 【搜索技能】外链
今儿因为在搜索一个很感兴趣的软件,但是软件信息所在的网址非常有限。因此产生了一个念头:我能不能找到所有的包含了或者是引用了这个网站的网站呢?调查之下,发现了“外链”这个概念。网络上的信息总是很多,如何找到有价值的信息值得我们思考。我要多多思考,让自己的知识目标化结构化。
2024-05-06 22:26:30 455
原创 【微磁学:mumax3的用法探索】mumax3的tools部分功能详解
本篇内容对于mumax3的tools有了一定的理解,接下来我们可以继续深入探索更多的muamx3内容。
2024-04-28 19:38:15 1762
原创 【微磁学:扒一扒mumax3的内核】LLG方程的多种求解方法
最近我很想把现微磁学模拟器的内容拆开看一遍,就像小时候拆收音机一样。目前感兴趣的微磁学模拟器为mumax3,现下免费且GPU加速,微磁学科研普遍使用的软件。会开一些文章记录细节,欢迎同道中人一起交流!!第一篇给LLG方程。本篇内容将讲解LLG方程的求解,给出不同的求解方式,并且用一个例子可视化LLG方程求解的过程。今天的总结内容主要是关于微磁学仿真器的核心部分LLG方程的解法,自己尝试了不同的求解算法,接下来需要从本身的设计构造去看。尝试扒一扒官网的源代码。
2024-04-28 00:12:51 1800
原创 【来自理工科的独有浪漫-给crush一朵夏天的雪花】--对于有限差分法的理解
在我的理解里,有限差分法就是对于微分方程/偏微分方程求解的一种数理方法,本质就是把对于微分的求解转化为求解大量代数方程组。转化的过程本质上是一种近似。举一个最简单的例子,假设我们有一个连续的函数,我们想要计算它在某个特定点的导数。为了使用有限差分法,我们将函数在该点附近进行离散化处理。首先,我们选择一个很小的步长,称为差分间距(finite difference interval)或网格间距(grid spacing)。然后,在该点的左右两侧选择一些离散点。
2024-04-23 16:35:17 1005
原创 快速熟悉torchdiffeq用法,从数理逻辑到完整案例【第四部分】
第一部分 torchdiffeq背后的数理逻辑第二部分 torchdiffeq的基本用法第三部分 trochdiffeq的升级用法第四部分 torchdiffeq的案例和代码解析第五部分 总结第三部分的参考网站:https://github.com/rtqichen/torchdiffeq。
2024-04-10 19:19:40 632
原创 快速熟悉torchdiffeq用法,从数理逻辑到完整案例【第二、三部分】
第一部分 torchdiffeq背后的数理逻辑第二部分 torchdiffeq的基本用法第三部分 trochdiffeq的升级用法第四部分 torchdifffeq的案例和代码解析第五部分 总结第二部分的参考网站:https://github.com/rtqichen/torchdiffeq。
2024-04-09 21:20:50 2525
原创 【技能积累】科研绘图类型总结
当我想绘制一幅科研论文的图,或者我在组会上想汇报我的科研结果的时候,画图清楚,有助于在思路也清楚的情况下让对面也清楚。那么就先思考一下,绘图的类型吧,首先要知道我们需要的图都有什么名字,我们才能在搜索的路上快速的找到目标。给出的参考链接是汉化版的,非常友好,收获很大。Matplotlib牛!
2024-04-08 23:15:49 1118
原创 linux下使用nohup运行文件返回目录浪费时间问题的解决
linux终端在nohup一个程序后,terminal再进入需要重新进入目录,这个过程比较麻烦,是否有更方便的方法?原本我的方案,ls出目录,cd进位置一个一个找到自己要运行的程序,比较瓜而且浪费时间。
2024-04-08 12:21:28 306
原创 快速熟悉torchdiffeq用法,从数理逻辑到完整案例【第一部分】
第一部分 torchdiffeq背后的数理逻辑第二部分 torchdiffeq的基本用法第三部分 trochdiffeq的升级用法第四部分 torchdifffeq的案例和代码解析第五部分 总结第一部分的参考资料:【1】关于数值方法如何求解(当解析方法不能被使用时):https://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx 欧拉方法【2】关于NeuralODE和Resnet之间的联系:https://zhuanlan.zhihu
2024-04-07 16:52:25 1042
原创 【C++】C++学习笔记1:基本语法
意识到Python和C++在一些数据处理方面有显著的不同,因此做一些学习记录。上一期通过一些例子考虑了C++和Python的不同,这一期快速学习一下C++的基本语法。部分内容由GPT补充。学习教程来源:https://www.runoob.com/cplusplus/cpp-tutorial.html学习前的知识铺垫:对于计算机程序和计算机程序设计语言有基本的了解C++可以被理解为带类的C。C++ 是 C 的一个超集,事实上,任何合法的 C 程序都是合法的 C++ 程序。
2024-03-25 11:35:45 973
原创 【C++】【Python】C++编程和Python的区别
类型系统Python是动态类型的,而C++是静态类型的。这意味着在Python中,你不需要在编写代码时声明变量的类型,而在C++中你必须这么做。C, C++, Java, Rust, Swift都是静态类型语言,在编译时进行,意味着程序在运行之前就已经确定了所有变量的类型。静态类型语言在性能上有优势,因为编译器知道具体的类型信息,能够进行优化。Python, Ruby, JavaScript, PHP, Perl适合快速开发,属于动态类型的语言。内存管理。
2024-03-23 22:21:13 711 1
原创 进军数学-三蓝一棕频道B站答疑记录--追星记录
推荐原因是不晦涩难懂,有例子,能够解释每一个例子背后的原理,能够从数学的角度出发,但是如果只是想理解皮毛也是适用的(可以只读十分之一)同样的,自己制作的工具被很多人使用, 当意识到别人了解了自己设计的工具,并且使用这一工具,那自然很快乐。一个好方法,听别人的讲座,看别人做了什么,看别人强调和略过的东西是什么,要明白数学有时候是口口相传。08:49 你在做视频的时候,是挑选自己很熟悉的话题,还是先选话题再深入学习?A: 潜移默化自动生成的结果,对于一个领域无比的熟悉,才能够产生一个话题去做视频讲述。
2024-02-19 18:33:25 925 1
原创 Diffusion model in Pytorch
Diffusion model 是机器学习中的一个比较新的生成式模型,且有望和GAN一较高下,在这里记录一些我的学习和理解。例如:以上就是今天要讲的内容,本文简单介绍了 Unet, GaussianDiffusion, Trainer在 Diffusion model 中的相互制约关系。
2024-02-19 10:55:17 561 1
原创 论文阅读暴躁者的论文快速阅读方法分享(2)
本篇内容承接上一篇内容进行,可点击查看。论文阅读暴躁者的论文快速阅读方法分享(1)上一次的总结中,思考了为什么自己会存在阅读暴躁状态的原因。总结下来就是没能给每一次阅读一个确定的目标指向,且没有“变现”的想法,即把每一次阅读,都尽可能的转化为输出。输出即能够在自己今后的科研道路中使用的知识储备,用以信息交换/交流共赢/个人研究沉淀。那么,这一次我就输出部分,做出一定思考,并且制定一系列表格用于后续阅读。在这篇分享完成后,我会遵循自己的阅读模式,继续进行每日阅读和总结。是否我的阅读暴躁症会就此结束呢。
2023-12-05 23:10:38 105
原创 Python论文多图绘制+代码+代码解读+绘图经验分享(2)
重新看了自己写的上一篇文章,上一篇给出的代码解决的主要论文多图绘制中的小图拼接,且被拼接的小图是已知分布的图线。这里说明,如果我们要解决的问题是对于多个小图进行拼接操作,该如何在上一篇代码的基础上做出改动。
2023-11-16 17:10:20 172 1
原创 Python论文多图绘制+代码+代码解读+绘图经验分享(1)
因为在写论文时,画图一直是一个比较大的问题。很想知道如何才能绘制出和论文一样好看的图像,以下是我学习的内容,也搬运了一些网站和教程在这里,请大家一起分享。确认要画的图的类型确认所画的图的排布方式对于绘图有一定的审美基础最终在绘制好看的论文图时,论文的图形的布局、颜色、线的粗细,都会需要考虑。最终的保存。
2023-11-13 22:14:24 418
原创 普通人外挂之搜索能力--Youtube学习总结(1)
最近听了Youtube上的一个有趣的seminar,名为:《技术搜索,普通人变强的唯一外挂》。给了我很多启发,在这里做一做笔记,并且记录一下学习之后期望的额外扩展,后续有机会的话会持续更新。学习资讯来源:https://www.youtube.com/watch?
2023-11-13 11:52:52 279
原创 Neural ODE逼近LLG方程
Neural ODE逼近LLG方程的过程,首先需要设计我们的neural ODE神经网络,这个网络的任务是学习LLG方程。神经网络的Loss即为数值算法的结果和逼近结果的差值,因此我们可以通过loss的结果查看方程逼近的正确与否。这种方法的主要思想是:我们可以将一个深度神经网络看作是一个连续的、可以微分的映射函数,这个函数可以通过求解一阶微分方程来得到。
2023-10-31 23:09:00 504 1
原创 关于SAC算法训练和测试的区别
SAC(Soft Actor-Critic)Method是一种强化学习算法,在使用策略梯度算法的同时,也考虑了最大熵原理,鼓励学习的策略在追求最大的优化值(即reward)的同时,也考虑了增加执行动作action时的探索性。训练和测试则是强化学习中的两个关键步骤,在写测试的代码的时候,发现了SAC算法在测试时需要更改的几个要点。在此记录。部分内容由ChatGPT4协助润色。
2023-10-24 17:44:49 291 1
原创 关于强化学习(RL)中网络结构设计的笔记和思考
SAC网络下的evaluate()和get_action()函数,本质上都是得到动作,然后在函数式中计算其相关的均值,标准差,得到随机数,然后通过这些信息,生成新的动作。区别只是在于,evaluate()用在训练中,而get_action用在训练后。
2023-10-16 16:57:51 435 1
原创 关于神经网络为什么能够逼近任意函数的思考
如果观察这些蓝色线段的设计,会发现他们其实是在红色线段的拐点处,产生一个突然的上升或者下降,而在没有达到拐点的时候,他们就会处于一个平稳的不影响整体曲线变化的值。我想接下来这个图说明了关键,输入的feature(即x1,x2,x3),在通过weight,bias调节为分段函数后,由激活函数决定什么时候参与加和,通过调节最终逼近目标函数y。任何函数,不论函数本身的表达有多复杂,形状有多奇特,都可以被分成很多段,每一段曲线都可以使用一个函数表示,这些分段函数加起来就可以表示我们的函数本身。
2023-10-16 00:07:43 371 2
原创 李宏毅老师机器学习课程跟学跟练
机器学习是一门很重要的课程,本人的研究方向是AI for science,因此具备一定的jAI基础很重要。有人和我推荐李宏毅老师的课程,很有趣且适合下饭,因此准备利用周末的时间一探究竟。一起学习吧~b站大学课程链接:https://www.bilibili.com/video/BV1Wv411h7kN/?了解了老师上课的框架,准备开始进行对应部分的代码练习+自我思考。
2023-10-15 23:22:26 130 2
原创 Pytorch+Reinforcement Learning--Soft Actor Critic方法的学习(带代码详解文献翻译框架总结)
以倒立摆为例,进行强化学习代码理解和算法理解和思考,十分有趣。
2023-10-11 22:14:34 500
原创 数据处理降维方法UMAP(Uniform Manifold Approximation and Projection)学习跟练
UMAP(Uniform Manifold Approximation and Projection)高维数据降维方法介绍跟练。
2023-09-16 22:51:53 10155 2
原创 mumax3 linux安装教程
mumax3 linux安装教程1. 确认GPU的版本 GPU版本和详情信息输入指令nvidia-smi,会出现如下界面,在界面上方第一行会存在Driver Version的信息,这里的version显示460.91.03,因此我在官网下载mumax3对应的Linux版时,就要选择 ≧\geqq≧ 450.36.06的版本。2.mumax3下载确定了GPU的版本后,在mumax3官网查看对应版本的下载途径。Mumax3官网:https://mumax.github.io/解压mumax3安
2022-03-01 22:59:45 2791 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人