矩形覆盖

题目:http://ac.jobdu.com/problem.php?pid=1390

题目描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

输入:

输入可能包含多个测试样例,对于每个测试案例,

输入包括一个整数n(1<=n<=70),其中n为偶数。

输出:

对应每个测试案例,

输出用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有的方法数。

样例输入:
4
样例输出:
5

分析:大矩形 大小为 2*1 时   有 1 种

                                   2 *2 时   有 2 种

                                   2 *3 时  有  3 种  即  在 2*1 的矩形 放置 2个横着的小矩形 变成 2*3 的矩形

                                                                  或者 在 2*2 的 矩形 放置1个竖着的小矩形 变成2*3的矩形

可得递推公式: dp[x] = dp[x-1] + dp[x-2]  发现为 Fibonacci


#include <stdio.h>
long long dp[75];
int main(void)  
{  
    int n;
    dp[1] = 1;
    dp[2] = 2;
    for(n=3; n<=70; n++)
        dp[n] = dp[n-1] + dp[n-2];
    while(scanf("%d", &n)!=EOF){
        printf("%lld\n", dp[n]);
    }
    return 0;  
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值