链路预测
文章平均质量分 86
堇禤
这个作者很懒,什么都没留下…
展开
-
【图对比学习】GACN:使用对抗网络增强图对比学习
论文提出了一种新颖的图对比学习框架GACN,使用对抗生成网络去生成视图,以解决图对比学习(GCL)在真实世界应用中广泛存在的标签稀缺问题。将图GAN和图对比学习GCL结合进行自监督预训练。具体来说,GACN通过学习视图分布和利用GCL的节点互信息最大化,可以在有限甚至无标签的情况下训练GNNs。通过设计的优化框架,GACN可同时训练图GAN模型和GCL模型。并通过两种精心设计的自监督学习损失函数——图对比损失和贝叶斯个性化排名损失,提高了训练效果。原创 2023-12-11 14:51:00 · 1703 阅读 · 1 评论 -
【CTR预测、神经网络参数自适应生成】 APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction
这是阿里发表的关于神经网络中网络参数自适应生成的文章,不仅可以做到不同的样本有不同的网络参数,同时通过拆分矩阵等操作大大提升了推理性能。原创 2022-05-16 17:08:05 · 1421 阅读 · 0 评论 -
【序列推荐、Transformer】SASRec:Self-Attentive Sequential Recommendation
《SASRec:基于自注意力机制的序列推荐》transformer最早提出是用在NLP领域做机器翻译的,本文将transformer中的注意力机制用在序列推荐上,**对于给定的物品序列来预测下一个最可能出现的物品是什么**(采用自注意力机制来对用户的历史行为信息建模,提取更为有价值的信息。最后将得到的信息分别与所有的物品embedding内容做内积,根据相关性的大小排序、筛选,得到Top-k个推荐。)。该方法在稀疏和密集数据集上都优于各种先进的序列模型。原创 2022-04-12 11:02:07 · 5759 阅读 · 0 评论 -
AUC指标的代码实现
AUC的python代码实现原创 2022-04-05 09:09:00 · 1798 阅读 · 0 评论 -
【图卷积】 LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
作者提出一个简化GCN的模型LightGCN,只包含GCN最重要的组成部分,例如领域的聚合,多层传播,抛弃了GCN最常见的**设计-特征转换**和**非线性激活**两个步骤,并且通过在用户-项目交互图上线性传播用户和项目的嵌入来学习它们,最后将所有层上学习到的用户和项目嵌入加权和算作最后的预测得分。原创 2022-04-01 15:25:08 · 3862 阅读 · 0 评论 -
链路预测算法的评价指标
衡量链路预测算法的精确度的指标有三种:AUC、Precision、Ranking Score。定义(G, V, E)为一个无向网络,其中V为节点集合,E为边的集合。网络中总的节点数为N,边数为M,则该网络中不考虑相连关系的话共有N(N-1)/2个节点对,即全集U。将网络中已知的连边E分为训练集ET和测试集EP两部分,EP是在E的范围内随机选取的连边,并将选取后的Ep从E中删掉变成ET。此时ET∪EP=E,ET∩EP=∅\emptyset∅。网络中还有E中不包含的连边的集合(两个节点之间没有边),我们将此原创 2022-03-28 09:48:20 · 2926 阅读 · 2 评论