图像处理
Chris5555555
这个作者很懒,什么都没留下…
展开
-
python常用的图像与矩阵操作
使用scikit-image进行图像读取操作:from skimage import ioimg = io.imrea(‘lena.jpg’);io.imshow(img)查看img大小:img.shapescikit-image对图像操作与matlab相似,比较适合matlab转python的同学scikit-image安装:pip install scikit-image 即可...原创 2020-07-30 22:23:10 · 643 阅读 · 0 评论 -
拉普拉斯算子
拉普拉斯算子主要用作边缘检测,基本假设为:边缘区域像素变化较大,因此该区域的一阶导数会出现单峰现象,该处的二阶导数为0时为该点对应的极值,对于离散像素来说如果f(x)为边缘处则边缘右侧像素一阶导数: (f(x+1)-f(x))/(x+1 -x)边缘左侧像素一阶导数: (f(x)-f(x-1))/(x-(x-1)边缘处二阶导数为:f(x+1)-f(x) -(f(x) - f(x-1)) = f(x+1) + f(x-1) - 2*f(x)因此通常拉普拉斯算子为:[ 0 1 0; 1 -4 1; 0 1原创 2020-05-27 23:31:46 · 2128 阅读 · 0 评论 -
局部直方图均衡化
局部直方图均衡算法局部直方图均衡算法,又称为子块直方图均衡算法按照所均衡子块的重叠程度来分类,可分为子块不重叠、子块重叠与子块部分重叠三种,下面分别对它们作一简介:子块不重叠的均衡算法首先将图像分割为不同子块,然后在每一个子块中做直方图均衡化处理,虽然每个块内处理较好,但是块与块之间不可避免出现边界效应子块重叠的均衡算法预先定义一个mxn的滑窗,对滑窗内像素做直方图均衡化处理,但是只保留中间像素的值,然后依次处理,得到最后的效果图。该方法通常需要首先将图像做外扩处理等,该方法效果较好,虽然运算复杂原创 2020-05-26 23:11:16 · 4378 阅读 · 3 评论 -
图像直方图均衡化
首先求出图像直方图hist(i) = sum(img(i))/(frameVLen*frameHLen)求出累计图像直方图accu(i) = sum(hist(0-i))根据累计值求出转换后的值new_graystep = round(accu(i)*(gray_max - gray_min))原图直方图均衡化处理后图...原创 2020-05-25 23:27:53 · 192 阅读 · 0 评论