MIT-1806线性代数笔记 01方程组的几何解释

文章介绍了线性代数的基础概念,包括线性组合、线性方程组的行图像和列图像,以及矩阵乘以向量的方法。讨论了二维和三维空间中线性方程组的几何表示,并指出非奇异矩阵意味着线性无关的向量可以覆盖整个空间。此外,提到了Schwarz不等式和计算向量夹角的问题。
摘要由CSDN通过智能技术生成

自留,主要是MIT1806课程的学习笔记,其中也包含了吉尔伯特教授所撰写的Introduction to Linear Algebra的阅读笔记,笔记中的一部分内容参考了某乎三少爷的键(搬的图,侵删)。才疏学浅,不当的地方还望指正包涵。而且由于课本跟课程并非一一对应所以可能会串^_^
在这一节中更重要的是理解其中的概念,其中线性组合是贯穿整个课程的重要概念。对于向量 v ⃗ 和 w ⃗ \vec v和\vec w v w ,给定数字 c 和 d c和d cd,我们乘以数并相加得到 c v ⃗ + d w ⃗ c\vec v+d\vec w cv +dw ,则称其为线性组合,本节重要的理念是从2,3维空间拓展到n维空间。

线性方程组的几何图像

行图像

对于方程组
{ 2 x − y = 0 − x + 2 y = 3 \begin{cases}2x-y=0\\ -x+2y=3 \\ \end{cases} {2xy=0x+2y=3
我们可以画出两个等式的图像,为两条直线,易得方程组的解是两条线的交点的坐标,即 x = 1 , y = 2 x=1,y=2 x=1,y=2请添加图片描述

列图像

我们将系数矩阵写成向量的线性组合 x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\left[\begin{matrix}2\\-1\\\end{matrix}\right]+y\left[\begin{matrix}-1\\2\\\end{matrix}\right]=\left[\begin{matrix}0\\3\\\end{matrix}\right] x[21]+y[12]=[03]
在这里插入图片描述

可以看到当蓝色向量加两倍的红色向量就得到了右侧向量,所以解为 x = 1 , y = 2 x=1,y=2 x=1,y=2
那么将n从2变成3会是怎样呢?
{ 2 x − y + 0 z = 0 − x + 2 y − z = − 1 0 x − 3 y + 4 z = 4 \begin{cases}2x-y+0z=0\\ -x+2y-z=-1 \\ 0x-3y+4z=4 \end{cases} 2xy+0z=0x+2yz=10x3y+4z=4
对于这个方程画出行图像,是三个平面相交与一点,图像也比二维难画了,但作为列图像,我们得到
x [ 2 − 1 0 ] + y [ − 1 2 − 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\left[\begin{matrix}2\\-1\\0\\\end{matrix}\right] +y\left[\begin{matrix}-1\\2\\-3\\ \end{matrix}\right] +z\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] =\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] x 210 +y 123 +z 014 = 014
我们将其看做三个三维向量的线性组合,我们可以轻易的画出图像,此时我们要做的就是要将左侧三个向量进行组合来求得右侧向量,这个例题很容易求解, x = 0 , y = 0 , z = 1 x=0 , y=0 , z=1 x=0,y=0,z=1,对于更加复杂的求解将在下一节消元法讲到。
列图像的另一个好处就是如果将右侧向量换一下,对于行图像需要更换三个新的平面取交点而对于列图像,只需要将三个向量重新组合。那么现在另一个问题是是否所有的右侧向量b都有解,转换成代数语言就是
对于 ∀ b , 是否能求解 A x = b ? 对于\forall b,是否能求解Ax=b? 对于b,是否能求解Ax=b?
线性组合的语言来问这个问题就变成了:列的线性组合是否能覆盖整个三维空间
而对于例中的矩阵,答案是是, A = [ 2 − 1 0 − 1 2 − 3 0 − 3 4 ] A=\left[\begin{matrix}2&-1&0\\-1&2&-3\\0&-3&4\\\end{matrix}\right] A= 210123034 是非奇异矩阵也就是可逆矩阵,那么不是的情况就是三个向量共线或者共面。这个结论可以推广至n维,只要n个n维向量线性无关那么就可以覆盖到整个n维空间,若有线性相关的向量那么这n个向量就相当于只有小于n个向量是真正起作用的。

矩阵乘以向量

对于如何求解 A x = b Ax=b Ax=b,有两种方法,例如取
[ 2 5 1 3 ] [ 1 2 ] \left[\begin{matrix}2&5\\1&3\\ \end{matrix}\right]\left[\begin{matrix}1\\2\\ \end{matrix}\right] [2153][12]

一次一列

1 × [ 2 1 ] + 2 × [ 5 3 ] = [ 12 7 ] 1\times\left[\begin{matrix}2\\1\\ \end{matrix}\right]+2\times\left[\begin{matrix}5\\3\\ \end{matrix}\right]=\left[\begin{matrix}12\\7\\ \end{matrix}\right] 1×[21]+2×[53]=[127]

一次一行(点乘)

[ 2 5 ] [ 1 2 ] = 2 × 1 + 5 × 2 = 12 [ 1 3 ] [ 1 2 ] = 1 × 1 + 3 × 2 = 7 \left[\begin{matrix}2&5\\ \end{matrix}\right] \left[\begin{matrix}1\\2\\ \end{matrix}\right] =2\times1+5\times2=12\\ \left[\begin{matrix}1&3\\ \end{matrix}\right] \left[\begin{matrix}1\\2\\ \end{matrix}\right]=1\times1+3\times 2=7 [25][12]=2×1+5×2=12[13][12]=1×1+3×2=7
在这里教授更推荐大家用第一种方法即 A x Ax Ax A A A各列的线性组合

要注意的问题:为了节省空间有时将
[ 2 5 ] \left[\begin{matrix}2\\5\\ \end{matrix}\right] [25]横着写成 ( 2 , 5 ) (2,5) (2,5)但是 ( 2 , 5 ) (2,5) (2,5)不等于 [ 2 , 5 ] [2,5] [2,5]

好了,第一节课的内容就结束了,下面是课本中比较有意思的思考题和一些对上课内容的知识补充


1、对于 v ⃗ = ( 1 , 0 ) 和 w ⃗ = ( 1 , 0 ) \vec v=(1,0)和 \vec w=(1,0) v =(1,0)w =(1,0),当 c ≥ 0 c\geq0 c0,描述所有 c v ⃗ + d w ⃗ c\vec v+d\vec w cv +dw 组成的几何图形。
solution:所有的 d w ⃗ d\vec w dw 组成了一条直线, c v ⃗ c\vec v cv 组成了,垂直于 d w ⃗ d\vec w dw 直线的半条直线。所以可得到一个半平面。
2、四维空间中的立方体有多少个角?有多少个3D面?有多少条边?一个典型的角是 ( 0 , 0 , 1 , 0 ) (0,0,1,0) (0,0,1,0),一条典型的边是 ( 0 , 1 , 0 , 0 ) (0,1,0,0) (0,1,0,0)
3、对于两个向量,我们有Schwarz不等式和三角不等式,即
∣ v ⃗ ⋅ w ⃗ ∣ ≤ ∣ ∣ v ⃗ ∣ ∣   ∣ ∣ w ⃗ ∣ ∣ ∣ ∣ v ⃗ + w ⃗ ∣ ∣ ≤ ∣ ∣ v ⃗ ∣ ∣ + ∣ ∣ w ⃗ ∣ ∣ |\vec v\cdot\vec w|\leq||\vec v||\ ||\vec w||\\ ||\vec v+\vec w||\leq||\vec v||+||\vec w|| v w ∣∣v ∣∣ ∣∣w ∣∣∣∣v +w ∣∣∣∣v ∣∣+∣∣w ∣∣
我们可以用这个公式来推导几何平均值小于等于代数平均值。
v ⃗ = ( a , b ) , w ⃗ = ( b , a ) \vec v=(a,b),\vec w=(b,a) v =(a,b),w =(b,a) 点乘为 2 a b 2ab 2ab 两个向量的模长都是 a 2 + b 2 \sqrt {a^2+b^2} a2+b2 ,根据Schwarz不等式我们可以得到 2 a b ≤ a 2 + b 2 2ab\leq a^2+b^2 2aba2+b2。而当 x = a 2 , y = b 2 x=a^2,y=b^2 x=a2,y=b2 时,我们就得到了“几何平均值” x y \sqrt {xy} xy 不大于“算术平均值” x + y 2 x+y\over 2 2x+y
可以试着证明 x y z 3 ≤ 1 3 ( x + y ) \sqrt [3]{xyz}\leq{1\over3}(x+y) 3xyz 31(x+y)。这里使用维基百科提供的方法。
令 G = x y z 3 , A = 1 3 ( x + y ) 令G=\sqrt [3]{xyz},A={1\over3}(x+y) G=3xyz ,A=31(x+y)
首先 x = y = z x=y=z x=y=z 时两式相等,我们已知在只有 x y xy xy 时几何平均数小于等于代数平均数成立,令 y y y 为新的式子 y + z − A y+z-A y+zA ,那么代数平均值 a = 1 2 ( x + y + z − A ) = 1 2 ( 3 A − A ) = A a={1\over2}(x+y+z-A)={1\over2}(3A-A)=A a=21(x+y+zA)=21(3AA)=A 又因为已知 a ≥ g a\geq g ag,则 A 3 ≥ g 2 A = x ( y + z − A ) A A^3\geq g^2A=x(y+z-A)A A3g2A=x(y+zA)A,而 ( y + z − A ) A = ( y − A ) ( A − z ) + y z > y z (y+z-A)A=(y-A)(A-z)+yz>yz (y+zA)A=(yA)(Az)+yz>yz,带入就得到 A 3 > x y z = G 3 A^3>xyz=G^3 A3>xyz=G3

4、取任意 x , y , z x,y,z x,y,z使 x + y + z = 0 x+y+z=0 x+y+z=0 ,计算 v ⃗ = ( x , y , z ) 和 w ⃗ = ( z , x , y ) \vec v=(x,y,z)和\vec w=(z,x,y) v =(x,y,z)w =(z,x,y)的夹角,试着解释为什么 v ⃗ ⋅ w ⃗ / ∣ ∣ v ⃗ ∣ ∣   ∣ ∣ w ⃗ ∣ ∣ \vec v\cdot\vec w/||\vec v||\ ||\vec w|| v w /∣∣v ∣∣ ∣∣w ∣∣ 恒等于 − 1 2 -{1\over2} 21
solution:
v ⃗ ⋅ w ⃗ = x z + x y + y z = 1 2 ( x + y + z ) 2 − 1 2 ( x 2 + y 2 + z 2 ) = 0 − 1 2 ∣ ∣ v ⃗ ∣ ∣   ∣ ∣ w ⃗ ∣ ∣ , 可得 c o s θ = 1 2 \vec v\cdot\vec w=xz+xy+yz= {1\over2}(x+y+z)^2-{1\over2}(x^2+y^2+z^2)=0-{1\over2}||\vec v||\ ||\vec w||,可得cos\theta={1\over2} v w =xz+xy+yz=21(x+y+z)221(x2+y2+z2)=021∣∣v ∣∣ ∣∣w ∣∣,可得cosθ=21

5、在MATLAB中令v=randn(3,1)并创建一个单位向量 u = v / ∣ ∣ v ∣ ∣ u=v/||v|| u=v/∣∣v∣∣,用V=randn(3,30)来创建更多的随机单位向量 U j U_j Uj。点积 ∣ u ⋅ U j ∣ |u\cdot U_j| uUj的平均值是什么?在微积分中,是 ∫ 0 π ∣ cos ⁡ θ ∣ d θ / π = 2 / π \int^\pi_0|\cos\theta|d\theta/\pi=2/\pi 0πcosθdθ/π=2/π

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值