SBR笔记:Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation
Abstract 基于会话的推荐(SBR)侧重于某一时间点的下一项预测。由于用户配置文件在这种情况下通常是不可用的,因此捕捉项目转换中的用户意图起着至关重要的作用。目前基于图形神经网络的SBR方法将项目转换视为成对关系,忽略了项目之间复杂的高阶信息。超图提供了一种自然的方式来捕捉超越成对的关系,而它在SBR中的潜力仍未被探索。在本文中,我们通过将基于会话的数据建模为超图来填补这一空白,然后提出了一种超图卷积网络来改进SBR。此外,为了增强超图建模,我们设计了另一个基于超图的线图的图卷积网络,然后通过最
原创
2021-05-04 20:46:01 ·
1784 阅读 ·
0 评论