- 博客(5)
- 收藏
- 关注
原创 Agent(智能体):概念解析与实战步骤
本次实战的混合式客服Agent,通过“规则保障准确性、LLM提升灵活性”的模式,平衡了落地效率与用户体验。对于不同场景的Agent,核心逻辑一致——“明确目标→拆解任务→配置能力→测试优化”,差异仅在于工具选择(如工业Agent需对接设备控制API,而非客服API)与模型选型(如自动驾驶Agent需专用的视觉模型,而非通用LLM)。扩展方向:若需提升Agent的智能度,可引入强化学习(RL)——让Agent在与用户的交互中自主学习“哪种回答方式满意度更高”;
2025-12-17 11:50:43
898
原创 全球可提供金融服务的数据服务商(无广)
本文基于2025年金融数据服务行业最新动态,从“数据能力-服务场景-技术支撑-商业价值”四个维度,详细拆解全球主流金融数据服务商的核心竞争力,涵盖国际巨头、本土龙头及垂直领域专精企业,为金融机构选型提供精准参考。
2025-12-17 10:53:59
808
原创 阿里云Dataworks大数据治理平台实现数据增量同步(Clickhouse数据库)
本文介绍了阿里云DataWorks离线同步任务的核心功能与配置方法。主要内容包括:1)支持50+异构数据源间的数据同步;2)提供全量/增量两种同步模式,支持分库分表聚合;3)向导模式、脚本模式和OpenAPI三种配置方式;4)详细的运维监控功能。重点演示了ClickHouse增量同步配置,通过where条件筛选增量数据,结合preSQL清理目标表旧数据,实现高效准确的增量同步。文章还对比了离线同步与实时同步的差异,建议根据业务场景选择合适的同步方式或混合架构。
2025-12-05 14:51:09
913
原创 3D-LLM: Injecting the 3D World into Large Language Models复现记录demo(包成功的,亲测有效)
首先安装anaconda,创建虚拟环境,注意python版本最低为3.10(github上写的3.8,但是3.8后续会报版本过低的错误),创建完后激活环境。数据解压在3D-LLM-main/3DLLM_BLIP2-base/data中(新建一个data文件夹)检查一下inference.py里的文件路径,输入以下代码就可以开始加载预训练的checkpoints了。检查点下载:pretrain_blip2_sam_flant5xl_v2.pth。(第一次写复现记录,若有问题,请见谅)关注一下,后续更新~
2025-01-21 16:00:09
628
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅