n log n 的最长上升子序列

本文介绍了如何使用二分查找实现一个时间复杂度为 n log n 的最长上升子序列(LIS)算法。通过维护一个有序数组 num 并进行二分查找,对于每个输入元素,找到其在有序数组中的合适位置,从而得到最长上升子序列的长度。代码中详细展示了算法的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000;
int num[N];
int bs(int r,int key)
{
    int l=0;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(num[mid]<key)
            l=mid+1;
        else
            r=mid-1;
    }
    return l;
}
int lcs(int n)
{
	int top=0;
	int k;
	for(int i=1;i<n;++i)
	{
        k=bs(top,num[i]);
        if(k>top)
            top=k;
        num[k]=num[i];//维护数组num的前一段,贪心保存当前最长子序列,对于下一个未放进去的元素,若大于nun[top],则放进num[top+1],
	}              //相应top要+1,否则,替换top前第一个大于该元素的值
	return top+1;
}
int main()
{
    int i,n;
    scanf("%d",&n);
    for(i=0;i<n;++i)
        scanf("%d",&num[i]);
    printf("%d\n",lcs(n));
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值