/**
hdu 3622 Bomb Game#2-sat+二分
这题竟然卡精度。
题意,有n对圆心,每对选一个,设置一个半径,使得任意两个圆不能相交,求最大的半径。
明显的2-sat+二分,矛盾即相交,因为圆都一样,不妨先求最大的直径。
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
using namespace std;
#define N 200
#define INF 1e5
#define EPS 1e-3
#define EPS2 1e-8
int n,e;
double d[N][N];
vector<int> vec[N];
int id[N],pre[N],low[N],s[N],stop,cnt,scnt;
void tarjan(int v)
{
int t,minc = low[v] = pre[v] =cnt++;
vector<int>::iterator pv;
s[stop++] = v;
for(pv= vec[v].begin(); pv != vec[v].end(); ++pv)
{
if(-1 == pre[*pv])
tarjan(*pv);
if(low[
hdu 3622 Bomb Game#2-sat+二分
该博客主要介绍了如何解决HDU 3622 Bomb Game#2问题,这是一个结合了2-SAT和二分查找的算法题目。通过建立不相交圆条件并进行 Tarjan 算法的深度优先搜索,确定无环条件,最终寻找最大的圆半径,确保所有圆不相交。文章中提供了详细的算法实现过程和代码示例。
摘要由CSDN通过智能技术生成