/**
[求和]poj 1990 MooFest #树状数组加速
{解法copy自poj的discuss
求总和∑(max(v[i],v[j])*abs(dist[j]-dist[i]) ) )
思路:先对牛按照v从小到大排序。
对于牛i,它与比他听力还小的牛之间交谈需要音量都是v[i],再乘以之间的距离就可以了。
在排好序后,设:
count[i]:比i听力小的且x坐标比第i头牛小的牛总数
total:count[i]中那些牛的x坐标总和
alltotal:表示所有比第i头牛听力小的牛的总数的话
那么,原题要求的式子就成了
∑( v[i] * 所有比i听力小的牛到i的总距离 )
=∑( v[i] * (count[i]*x[i] – total + alltotal – total – (i – count[i] – 1) * x[i] ) )
关键就在,如何求count[i]和total[i]更快。
因为如果排好序后是扫一遍所有牛的坐标的话,时间复杂度就是n^2了,
不行。所以想到了树状数组。树状数组用于动态的求一个数组前i个数的总和。
所以,把count作为一个树状数组,如果在坐标x上有一头牛,那么count[x] = 1。
这样求i之前有多少头牛,就是count(i)的一个查询。
把total同样作为一个树状数组,如果坐标x上有一头牛,那么total[x] = x
}
*/
#include <std
[求和]poj 1990 MooFest #树状数组加速
该博客介绍了如何利用树状数组解决POJ 1990题目的求和问题。通过将牛按照听力大小排序,博主展示了如何动态计算比当前牛听力小的牛的数量及其坐标总和,以此优化算法,避免二次方的时间复杂度,实现线性时间复杂度的解决方案。
摘要由CSDN通过智能技术生成