哈夫曼树

(1)九度上的练习题,通过这个练习题把哈夫曼树复习一遍,并编码实现:

题目描述:

哈夫曼树,第一行输入一个数n,表示叶结点的个数。需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出所有结点的值与权值的乘积之和。

输入:

输入有多组数据。
每组第一行输入一个数n,接着输入n个叶节点(叶节点权值不超过100,2<=n<=1000)。

输出:

输出权值。

样例输入:
5  
1 2 2 5 9
样例输出:
37
(2)代码实现

#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdlib.h>
 
#define MAXSIZE 1000
 
using namespace std;
 
struct TreeNode
{
   int value;
   TreeNode* left;
   TreeNode* right;
};
 
int compare(const void* a, const void* b)
{
    return ((*(TreeNode**)a)->value - (*(TreeNode**)b)->value);
}
 
TreeNode* ConstructHuffman(TreeNode** nodeArray, int n)
{
    int count = n;
    while(count > 1)
    {
        qsort(nodeArray,count, sizeof(TreeNode*), compare);
        int temp1 = nodeArray[0]->value;
        int temp2 = nodeArray[1]->value;
 
        TreeNode* parent = new TreeNode;
        parent->left = nodeArray[0];
        parent->right = nodeArray[1];
        parent->value = temp1+temp2;
 
        nodeArray[0] = parent;
        nodeArray[1] = nodeArray[count-1];
        count--;
    }
    return nodeArray[0];
}
void PrintPreTree(TreeNode* node)
{
    cout<<node->value<<endl;
    if(node->left != NULL)
        PrintPreTree(node->left);
    if(node->right != NULL)
        PrintPreTree(node->right);
}
 
void DeleteTree(TreeNode* node)
{
    if(node->left != NULL)
        DeleteTree(node->left);
    if(node->right != NULL)
        DeleteTree(node->right);
    delete node;
    node = NULL;
}
 
void CountWeight(TreeNode* node, int high, int& total)
{
    if(node != NULL && node->left == NULL && node->right == NULL)
    {     
        //cout<<high<<" "<<node->value<<endl;
        total += (high*(node->value));
    }
    int currHigh = high;
    if(node->left != NULL)
        CountWeight(node->left, ++currHigh, total);
    currHigh = high;
    if(node->right != NULL)
        CountWeight(node->right, ++currHigh, total);
}
 
int main()
{
    int n;
    TreeNode** nodeArray= new TreeNode*[MAXSIZE];
    while(cin>>n)
    {
        memset(nodeArray, 0, sizeof(TreeNode*)*MAXSIZE);
        //初始化叶节点
        TreeNode* tempTreeNode = NULL;
        for(int i=0; i<n; ++i)
        {
            tempTreeNode = new TreeNode;
            tempTreeNode->left = NULL;
            tempTreeNode->right = NULL;
            cin>>tempTreeNode->value;
            nodeArray[i] = tempTreeNode;
        }
        TreeNode* root = ConstructHuffman(nodeArray, n);
        //PrintPreTree(root);
        int total = 0;
        CountWeight(root, 0, total);
        cout<<total<<endl;
        DeleteTree(root);
    }


### 回答1: 哈夫曼树是一种特殊的二叉树,它的每个子节点都有一个权值,通过构建哈夫曼树可以得到一种最优的编码方式,使得编码后的据长度最短。在本题中,输入一个n表示结点个数需要用这些结点生成哈夫曼树,并计算出哈夫曼树的带权路径长度(wpl),即每个子节点的权值乘以它到根节点的路径长度之和。 ### 回答2: 哈夫曼树又叫最优二叉树,是一种带权路径长度最短的树形结构。在哈夫曼树中,每个子节点对应一个字符且带有一个权值,该权值表示该节点对应字符在文本中的出现频率。在构造哈夫曼树的过程中,需要不断将权值最小的两个节点合并,形成一个新的节点,直到最后生成整棵哈夫曼树。 在本题中,首先输入一个n,表示结点个数。接着根据输入的n个权值,构造哈夫曼树并计算带权路径长度。具体操作如下: 1.将n个权值作为子节点,构造n棵单节点树。 2.每次从这n棵树中选出权值最小的两棵树进行合并构造一棵新树。 3.将新树的根节点的权值设为其左右子树的权值之和,直到所有节点都合并成一棵哈夫曼树。 4.计算哈夫曼树的带权路径长度,即遍历整棵树,对每个子节点的权值乘以其到根节点的路径长度(即边的权重),并将所有子节点的结果相加。 5.输出哈夫曼树的带权路径长度。 需要注意的是,在构造哈夫曼树时,如果权值相同,可以任意选择将哪两棵树合并。但是为了保证结果的唯一性,需要按照一定顺序进行操作。比如可以按照权值从小到大排序,每次选取权值最小的两棵树进行合并。 总之,构造哈夫曼树的过程复杂度为O(nlogn),其中n为子节点的个数,是一种高效的处理字符串编码问题的方法。 ### 回答3: 哈夫曼树是一种基于贪心算法的树形据结构,它是由一组给定权值的子节点构造出来的。在构建哈夫曼树的过程中,每次从当前剩余节点中挑选两个权值最小的节点组成一棵新的子树,并将这棵子树的根节点的权值设置为这两个节点权值之和。不断重复这个过程,直到所有节点都被合并成一棵树,这就是哈夫曼树。 输入的第一行节点的个数n,根据题目需要使用这些节点生成哈夫曼树,并计算它的带权路径长度。每个节点都有一个权值weight,计算带权路径长度的方法是将每个节点到根节点的路径长度乘以相应的权值,累加起来即可。因此,要计算带权路径长度,我们需要先构建哈夫曼树,然后对树进行遍历,计算出每个节点到根节点的路径长度和对应的权值,最后相乘求和即可得到带权路径长度。 在构建哈夫曼树的过程中,可以使用优先队列(堆)来实现选择权值最小的节点。对于每个节点,我们需要知道其权值、左子树和右子树。构建哈夫曼树时,可以将子节点加入到优先队列中,然后每次从优先队列中取出两个权值最小的节点,合并成一棵新的子树,并将这棵子树的根节点加入到优先队列中。重复这个过程,直到优先队列中只剩下一棵树,这棵树就是哈夫曼树。 计算带权路径长度时,可以使用深度优先搜索遍历整棵哈夫曼树。对于每个节点,记录它到根节点的路径长度和相应的权值,然后将路径长度和权值相乘累加起来,最后得到带权路径长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值