目录
(二)精确率(Precision)、召回率(Recall)和 F1 分数
摘要 :在机器学习的庞大体系中,分类算法犹如一颗颗璀璨的明珠,为众多领域的决策支持提供了坚实的基石。本文将深入浅出地剖析多种经典分类算法的核心原理,从 K-最近邻(KNN)的简单直观,到支持向量机(SVM)的优雅几何,再到决策树与随机森林的层级智慧,以及逻辑回归独特的概率解读。同时,全面细致地解读分类评估指标,不仅阐述准确率、精确率、召回率和 F1 分数等常用的性能度量方法,更深入探讨 ROC 曲线与 AUC 值如何全面刻画模型的分类能力。配合精心设计的代码示例、贴合实际的应用场景,以及不容忽视的注意事项,本文致力于为读者呈现一份详尽、实用的分类算法与评估指标指南,助力读者在机器学习的征途上稳健前行。