第4篇:分类算法与评估指标

目录

一、概念讲解

(一)分类算法

二、分类评估指标

(一)准确率(Accuracy)

(二)精确率(Precision)、召回率(Recall)和 F1 分数

(三)ROC 曲线与 AUC 值

三、代码示例

(一)K-最近邻(KNN)分类器

(二)支持向量机(SVM)分类器

四、应用场景

(一)医疗诊断

(二)金融风险预测

(三)文本分类

五、注意事项

(一)数据预处理

(二)模型选择

(三)评估指标的选择

(四)模型调优

六、总结


摘要 :在机器学习的庞大体系中,分类算法犹如一颗颗璀璨的明珠,为众多领域的决策支持提供了坚实的基石。本文将深入浅出地剖析多种经典分类算法的核心原理,从 K-最近邻(KNN)的简单直观,到支持向量机(SVM)的优雅几何,再到决策树与随机森林的层级智慧,以及逻辑回归独特的概率解读。同时,全面细致地解读分类评估指标,不仅阐述准确率、精确率、召回率和 F1 分数等常用的性能度量方法,更深入探讨 ROC 曲线与 AUC 值如何全面刻画模型的分类能力。配合精心设计的代码示例、贴合实际的应用场景,以及不容忽视的注意事项,本文致力于为读者呈现一份详尽、实用的分类算法与评估指标指南,助力读者在机器学习的征途上稳健前行。

一、概念讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值