目录
(一)使用TensorFlow和Keras实现CNN进行图像分类
摘要 :图像识别与分类作为人工智能领域的核心技术之一,正推动着各行业的智能化变革。本文深入剖析基于深度学习的图像识别技术原理,涵盖卷积神经网络(CNN)的关键组件、预训练模型迁移学习优势以及前沿的注意力机制和Transformer架构应用。通过详尽的TensorFlow与Keras代码示例,读者将能够快速上手搭建高效图像分类模型,并掌握迁移学习在实际项目中的优化技巧。同时,本文广泛探讨图像识别技术在安防、医疗、零售等领域的创新应用场景,深入分析模型部署、数据增强等关键注意事项,助力读者在实际项目中充分发挥深度学习技术优势,攻克图像识别挑战。