概念讲解
异常检测
异常检测(Anomaly Detection)是指从大量数据中识别出不符合正常模式的数据点或行为。异常检测在许多领域都有重要应用,例如网络安全、工业生产、金融欺诈检测和医疗诊断等。异常检测的目标是及时发现潜在的问题或风险,从而采取相应的措施。
深度学习在异常检测中的应用
深度学习模型能够自动提取数据中的特征,识别正常和异常模式。常见的深度学习模型包括:
-
自编码器(Autoencoder):
-
通过编码器将数据压缩为低维表示,再通过解码器重建原始数据。异常数据通常在重建过程中会产生较大的误差。
-
-
生成对抗网络(GAN):
-
生成器生成正常数据的分布,判别器区分真实数据和生成数据。异常数据通常会被判别器识别为“异常”。
-
-
长短期记忆网络(LSTM):
-
适用于时间序列数据,能够捕捉时间序列中的异常模式。
-
-
Transformer:
-
通过自注意力机制
-