引言
文本分类和情感分析是自然语言处理(NLP)中最常见的任务之一。文本分类的目标是将文本分配到预定义的类别中,而情感分析则是判断文本中所表达的情感倾向(如正面、负面或中性)。随着深度学习技术的发展,尤其是Transformer架构的出现,这些任务的性能得到了显著提升。
Hugging Face的Transformers库提供了强大的工具,使得加载、微调和部署预训练模型变得非常容易。本文将详细介绍如何使用Hugging Face Transformers进行文本分类和情感分析,包括概念讲解、代码示例、应用场景、注意事项以及相关的架构图和流程图。
文本分类与情感分析概述
任务定义
-
文本分类:将文本分配到预定义的类别中。例如,新闻分类、垃圾邮件检测等。
-
情感分析:判断文本中所表达的情感倾向。例如,判断影评是正面的还是负面的。
数据集介绍
文本分类和情感分析通常需要标注的数据集。以下是一些常用的数据集:
-
IMDB影评数据集:包含50,000条影评,分为正面和负面两类。
-
Twitter情感分析数据集:包含大量Twitter推文,标